Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioinformatics ; 38(10): 2954-2955, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561177

RESUMEN

SUMMARY: The package MorphoTools2 is intended for multivariate analyses of morphological data. Commonly used tools are missing or scattered across several R packages. The new package, in order to make the workflow convenient and fast, wraps available statistical and graphical tools and provides a comprehensive framework for checking and manipulating input data, core statistical analyses and a wide palette of functions designed to visualize results. AVAILABILITY AND IMPLEMENTATION: Stable version is available from CRAN: https://cran.r-project.org/package=MorphoTools2. The development version is available from the following GitHub repository: https://github.com/MarekSlenker/MorphoTools2. The software is distributed under the GNU General Public Licence (v.3). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Análisis Multivariante , Flujo de Trabajo
2.
Mol Phylogenet Evol ; 178: 107666, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384185

RESUMEN

BACKGROUND AND AIMS: A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. METHODS: In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. KEY RESULTS: Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54-8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. CONCLUSIONS: Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.


Asunto(s)
Amomum , Zingiberaceae , Tamaño del Genoma , Filogenia , Amomum/genética , Zingiberaceae/genética , Genoma de Planta , ADN de Plantas/genética , ADN Ribosómico/genética , ADN de Cloroplastos
3.
Ann Bot ; 131(1): 71-86, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34559179

RESUMEN

BACKGROUND AND AIMS: Reproductive isolation and local establishment are necessary for plant speciation. Polyploidy, the possession of more than two complete chromosome sets, creates a strong postzygotic reproductive barrier between diploid and tetraploid cytotypes. However, this barrier weakens between polyploids (e.g. tetraploids and hexaploids). Reproductive isolation may be enhanced by cytotype morphological and environmental differentiation. Moreover, morphological adaptations to local conditions contribute to plant establishment. However, the relative contributions of ploidy level and the environment to morphology have generally been neglected. Thus, the extent of morphological variation driven by ploidy level and the environment was modelled for diploid, tetraploid and hexaploid cytotypes of Campanula rotundifolia agg. Cytotype distribution was updated, and morphological and environmental differentiation was tested in the presence and absence of natural contact zones. METHODS: Cytotype distribution was assessed from 231 localities in Central Europe, including 48 localities with known chromosome counts, using flow cytometry. Differentiation in environmental niche and morphology was tested for cytotype pairs using discriminant analyses. A structural equation model was used to explore the synergies between cytotype, environment and morphology. KEY RESULTS: Tremendous discrepancies were revealed between the reported and detected cytotype distribution. Neither mixed-ploidy populations nor interploidy hybrids were detected in the contact zones. Diploids had the broadest environmental niche, while hexaploids had the smallest and specialized niche. Hexaploids and spatially isolated cytotype pairs differed morphologically, including allopatric tetraploids. While leaf and shoot morphology were influenced by environmental conditions and polyploidy, flower morphology depended exclusively on the cytotype. CONCLUSIONS: Reproductive isolation mechanisms vary between cytotypes. While diploids and polyploids are isolated postzygotically, the environmental niche shift is essential between higher polyploids. The impact of polyploidy and the environment on plant morphology implies the adaptive potential of polyploids, while the exclusive relationship between flower morphology and cytotype highlights the role of polyploidy in reproductive isolation.


Asunto(s)
Campanulaceae , Tetraploidía , Ploidias , Poliploidía , Diploidia
4.
Ann Bot ; 131(4): 585-600, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656962

RESUMEN

BACKGROUND AND AIMS: Southwestern Asia is a significant centre of biodiversity and a cradle of diversification for many plant groups, especially xerophytic elements. In contrast, little is known about the evolution and diversification of its hygrophytic flora. To fill this gap, we focus on Cardamine (Brassicaceae) species that grow in wetlands over a wide altitudinal range. We aimed to elucidate their evolution, assess the extent of presumed historical gene flow between species, and draw inferences about intraspecific structure. METHODS: We applied the phylogenomic Hyb-Seq approach, ecological niche analyses and multivariate morphometrics to a total of 85 Cardamine populations from the target region of Anatolia-Caucasus, usually treated as four to six species, and supplemented them with close relatives from Europe. KEY RESULTS: Five diploids are recognized in the focus area, three of which occur in regions adjacent to the Black and/or Caspian Sea (C. penzesii, C. tenera, C. lazica), one species widely distributed from the Caucasus to Lebanon and Iran (C. uliginosa), and one western Anatolian entity (provisionally C. cf. uliginosa). Phylogenomic data suggest recent speciation during the Pleistocene, likely driven by both geographic separation (allopatry) and ecological divergence. With the exception of a single hybrid (allotetraploid) speciation event proven for C. wiedemanniana, an endemic of southern Turkey, no significant traces of past or present interspecific gene flow were observed. Genetic variation within the studied species is spatially structured, suggesting reduced gene flow due to geographic and ecological barriers, but also glacial survival in different refugia. CONCLUSIONS: This study highlights the importance of the refugial regions of the Black and Caspian Seas for both harbouring and generating hygrophytic species diversity in Southwestern Asia. It also supports the significance of evolutionary links between Anatolia and the Balkan Peninsula. Reticulation and polyploidization played a minor evolutionary role here in contrast to the European relatives.


Asunto(s)
Cardamine , Filogenia , Cardamine/genética , Turquía , Variación Genética , Europa (Continente)
5.
Am J Bot ; 107(10): 1375-1388, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32974906

RESUMEN

PREMISE: Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS: We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS: We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS: This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.


Asunto(s)
Arabidopsis , Diploidia , Arabidopsis/genética , Humanos , Ploidias , Poliploidía , Tetraploidía
6.
Ann Bot ; 124(2): 209-220, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30868165

RESUMEN

BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.


Asunto(s)
Brassicaceae , Cardamine , Europa (Continente) , Asia Oriental , Genoma de Planta , Humanos , Especies Introducidas , Poliploidía
7.
Ann Bot ; 124(2): 255-268, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31185073

RESUMEN

BACKGROUND AND AIMS: Polyploidy is an important driver of plant diversification and adaptation to novel environments. As a consequence of genome doubling, polyploids often exhibit greater colonizing ability or occupy a wider ecological niche than diploids. Although elevation has been traditionally considered as a key driver structuring ploidy variation, we do not know if environmental and phenotypic differentiation among ploidy cytotypes varies along an elevational gradient. Here, we tested for the consequences of genome duplication on genetic diversity, phenotypic variation and habitat preferences on closely related diploid and tetraploid populations that coexist along approx. 2300 m of varying elevation. METHODS: We sampled and phenotyped 45 natural diploid and tetraploid populations of Arabidopsis arenosa in one mountain range in Central Europe (Western Carpathians) and recorded abiotic and biotic variables at each collection site. We inferred genetic variation, population structure and demographic history in a sub-set of 29 populations genotyped for approx. 36 000 single nucleotide polymorphisms. KEY RESULTS: We found minor effects of polyploidy on colonization of alpine stands and low genetic differentiation between the two cytotypes, mirroring recent divergence of the polyploids from the local diploid lineage and repeated reticulation events among the cytotypes. This pattern was corroborated by the absence of ecological niche differentiation between the two cytotypes and overall phenotypic similarity at a given elevation. CONCLUSIONS: The case of A. arenosa contrasts with previous studies that frequently showed clear niche differentiation between cytotypes. Our work stresses the importance of considering genetic structure and past demographic processes when interpreting the patterns of ploidy distributions, especially in species that underwent recent polyploidization events.


Asunto(s)
Arabidopsis , Ecosistema , Europa (Continente) , Humanos , Ploidias , Poliploidía
8.
Am J Bot ; 106(11): 1499-1518, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31639199

RESUMEN

PREMISE: Disjunct distributions have been commonly observed in mountain plant species and have stimulated phylogeographic and phylogenetic research. Here we studied Alyssum repens, a member of the polyploid species complex A. montanum-A. repens, which exhibits SE Alpine-Carpathian disjunctions with a large elevational span and consists of diploid and tetraploid populations. We aimed to investigate the species' genetic and cytotype structure in the context of its distribution patterns, to elucidate the polyploid origins and to propose an appropriate taxonomic treatment. METHODS: We combined AFLP fingerprinting markers, sequence variation of the highly repetitive ITS region of rDNA and the low-copy DET1 nuclear gene, genome size, and morphometric data. RESULTS: We identified four geographically structured genetic lineages. One consisted of diploid populations from the foothills of the Southeastern Alps and neighboring regions, and the three others were allopatric montane to alpine groups comprising diploids and tetraploids growing in the Southeastern Carpathians and the Apuseni Mts. in Romania. CONCLUSIONS: We inferred a vicariance scenario associated with Quaternary climatic oscillations, accompanied by one auto- and two allopolyploidization events most likely involving a northern Balkan relative. Whereas genetic differentiation and allopatric distribution would favor the taxonomic splitting of this species, the genetic lineages largely lack morphological distinguishability, and their ecological, cytotype and genome size divergence is only partial. Even though we probably face here a case of incipient speciation, we propose to maintain the current taxonomic treatment of Alyssum repens as a single, albeit variable, species.


Asunto(s)
Diploidia , Poliploidía , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Variación Genética , Humanos , Filogenia , Filogeografía
9.
Mol Ecol ; 25(16): 3929-49, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27288974

RESUMEN

Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern 'cryptic' glacial refugium. Using genome-wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little-known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude-related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high-altitude and high-latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow-up studies of this emerging model of evolutionary biology.


Asunto(s)
Arabidopsis/genética , Genética de Población , Refugio de Fauna , Peninsula Balcánica , Ecosistema , Europa Oriental , Repeticiones de Microsatélite , Filogenia , Polimorfismo de Nucleótido Simple
10.
Mol Phylogenet Evol ; 100: 303-321, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27090448

RESUMEN

Discerning relationships among species evolved by reticulate and/or polyploid evolution is not an easy task, although it is widely discussed. The economically important genus Curcuma (ca. 120 spp.; Zingiberaceae), broadly distributed in tropical SE Asia, is a particularly interesting example of a group of palaeopolyploid origin whose evolution is driven mainly by hybridization and polyploidization. Although a phylogeny and a new infrageneric classification of Curcuma, based on commonly used molecular markers (ITS and cpDNA), have recently been proposed, significant evolutionary questions remain unresolved. We applied a multilocus approach and a combination of modern analytical methods to this genus to distinguish causes of gene tree incongruence and to identify hybrids and their parental species. Five independent regions of nuclear DNA (DCS, GAPDH, GLOBOSA3, LEAFY, ITS) and four non-coding cpDNA regions (trnL-trnF, trnT-trnL, psbA-trnH and matK), analysed as a single locus, were employed to construct a species tree and hybrid species trees using (*)BEAST and STEM-hy. Detection of hybridogenous species in the dataset was also conducted using the posterior predictive checking approach as implemented in JML. The resulting species tree outlines the relationships among major evolutionary lineages within Curcuma, which were previously unresolved or which conflicted depending upon whether they were based on ITS or cpDNA markers. Moreover, by using the additional markers in tests of plausible topologies of hybrid species trees for C. vamana, C. candida, C. roscoeana and C. myanmarensis suggested by previous molecular and morphological evidence, we found strong evidence that all the species except C. candida are of subgeneric hybrid origin.


Asunto(s)
Curcuma/genética , Asia , ADN de Cloroplastos/genética , Evolución Molecular , Genes de Plantas , Hibridación Genética , Filogenia , Poliploidía , Análisis de Secuencia de ADN
11.
Plant Cell ; 25(9): 3280-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24082009

RESUMEN

This article describes the use of cytogenomic and molecular approaches to explore the origin and evolution of Cardamine schulzii, a textbook example of a recent allopolyploid, in its ~110-year history of human-induced hybridization and allopolyploidy in the Swiss Alps. Triploids are typically viewed as bridges between diploids and tetraploids but rarely as parental genomes of high-level hybrids and polyploids. The genome of the triploid semifertile hybrid Cardamine × insueta (2n = 24, RRA) was shown to combine the parental genomes of two diploid (2n = 2x = 16) species, Cardamine amara (AA) and Cardamine rivularis (RR). These parental genomes have remained structurally stable within the triploid genome over the >100 years since its origin. Furthermore, we provide compelling evidence that the alleged recent polyploid C. schulzii is not an autohexaploid derivative of C. × insueta. Instead, at least two hybridization events involving C. × insueta and the hypotetraploid Cardamine pratensis (PPPP, 2n = 4x-2 = 30) have resulted in the origin of the trigenomic hypopentaploid (2n = 5x-2 = 38, PPRRA) and hypohexaploid (2n = 6x-2 = 46, PPPPRA). These data show that the semifertile triploid hybrid can promote a merger of three different genomes and demonstrate how important it is to reexamine the routinely repeated textbook examples using modern techniques.


Asunto(s)
Evolución Biológica , Cardamine/genética , Genoma de Planta/genética , Inestabilidad Genómica , Secuencia de Bases , Dosificación de Gen , Hibridación Genética , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Poliploidía , Análisis de Secuencia de ADN , Especificidad de la Especie , Triploidía
12.
Ann Bot ; 118(6): 1071-1088, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27443297

RESUMEN

BACKGROUND AND AIMS: The Balkan Peninsula is one of the most important centres of plant diversity in Europe. Here we aim to fill the gap in the current knowledge of the evolutionary processes and factors modelling this astonishing biological richness by applying multiple approaches to the Cyanus napulifer group. METHODS: To reconstruct the mode of diversification within the C. napulifer group and to uncover its relationships with potential relatives with x = 10 from Europe and Northern Africa, we examined variation in genetic markers (amplified fragment length polymorphisms [AFLPs]; 460 individuals), relative DNA content (4',6-diamidino-2-phenylindole [DAPI] flow cytometry, 330 individuals) and morphology (multivariate morphometrics, 40 morphological characters, 710 individuals). To elucidate its evolutionary history, we analysed chloroplast DNA (cpDNA) sequences of the genus Cyanus deposited in the GenBank database. KEY RESULTS: The AFLPs revealed a suite of closely related entities with variable levels of differentiation. The C. napulifer group formed a genetically well-defined unit. Samples outside the group formed strongly diversified and mostly species-specific genetic lineages with no further geographical patterns, often characterized also by a different DNA content. AFLP analysis of the C. napulifer group revealed extensive radiation and split it into nine allopatric (sub)lineages with varying degrees of congruence among genetic, DNA-content and morphological patterns. Genetic admixture was usually detected in contact zones between genetic lineages. Plastid data indicated extensive maintenance of ancestral variation across Cyanus perennials. CONCLUSION: The C. napulifer group is an example of a rapidly and recently diversified plant group whose genetic lineages have evolved in spatio-temporal isolation on the topographically complex Balkan Peninsula. Adaptive radiation, accompanied in some cases by long-term isolation and hybridization, has contributed to the formation of this species complex and its mosaic pattern.


Asunto(s)
Asteraceae/genética , Evolución Biológica , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Asteraceae/anatomía & histología , Peninsula Balcánica , Biodiversidad , ADN de Cloroplastos/genética , Citometría de Flujo , Marcadores Genéticos/genética
13.
Am J Bot ; 103(7): 1348-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27206461

RESUMEN

PREMISE OF THE STUDY: After decades of interest, the contribution of hybridization to ecological diversification remains unclear. Hybridization is a potent source of novelty, but nascent hybrid lineages must overcome reproductive and ecological competition from their parental species. Here, we assess whether hybrid speciation is advantageous over alternative modes of speciation, by comparing the geographical and ecological ranges and climatic niche evolutionary rates of stabilized allopolyploid vs. autopolyploids in the Alyssum montanum species complex. METHODS: We combined an extensive review of studies addressing the systematics and genetic diversity of A. montanum s.l., with flow cytometry and cloning of nuclear markers, to establish the ploidy level and putative hybrid nature of 205 populations. The respective geographic distribution and climatic niche evolution dynamics of the allo- and autopolyploids were investigated using multivariate analyses and comparative phylogenetic approaches. KEY RESULTS: As expected by theory, allopolyploids occur mainly along contact zones and are generally spatially overlapping with their diploid counterparts. However, they demonstrate higher rates of niche evolution and expand into different climatic conditions than those of their diploid congeners. In contrast, autopolyploids show lower rates of niche evolution, occupy ecological niches similar to their ancestors and are restricted to less competitive and peripheral geographic areas. CONCLUSIONS: Hybridization thus seems advantageous by promoting ecological niche evolution and more readily allowing escape from competitive exclusion.


Asunto(s)
Brassicaceae/genética , Variación Genética , Hibridación Genética , Ploidias , Evolución Biológica , Clima , Diploidia , Ecología , Geografía , Filogenia
14.
Am J Bot ; 102(8): 1380-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26290560

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Contact zones between diploids and their autopolyploid descendants represent a unique evolutionary venue for studying polyploid establishment, cytotype coexistence, and interactions. Here, we examine cytotype coexistence in a diploid-tetraploid contact zone of a perennial herb, Cardamine amara, located north of the Alps by assessing cytotype spatial patterns, ecological divergence, and genetic variation and structure.• METHODS: Flow cytometry was applied to screen DNA ploidy levels in 302 populations (3296 individuals) and the genetic variation of a selection of 25 populations was examined using microsatellite and AFLP markers. Environmental (landscape and climatic) data were analyzed to assess ecological differentiation between the cytotypes.• KEY RESULTS: A parapatric distribution of the cytotypes with a relatively wide (over 100 km in some regions) secondary contact zone was identified. Mixed-ploidy populations, documented for the first time in this species, as well as triploid individuals were found along the diploid-tetraploid borderline. Different climatic requirements of the two main cytotypes were revealed, mirrored in their altitudinal separation. The tetraploids were genetically differentiated from both the diploids and the modeled, in silico autotetraploid genotypes, in accordance with the assumed polyploid origin and spread linked to past glaciations, and largely independent evolution in allopatry.• CONCLUSIONS: The observed spatial and genetic patterns likely reflect the evolutionary and colonization history of the two cytotypes and have been maintained by multiple factors such as ecological divergence, limited gene flow between the cytotypes, and the restricted dispersal capacity.


Asunto(s)
Cardamine/fisiología , Cromosomas de las Plantas/genética , Ecosistema , Variación Genética , Dispersión de las Plantas , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Cardamine/genética , Diploidia , Europa (Continente) , Hibridación Genética , Repeticiones de Microsatélite , Tetraploidía
15.
BMC Evol Biol ; 14: 224, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25344686

RESUMEN

BACKGROUND: Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS: Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS: Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.


Asunto(s)
Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/citología , Evolución Biológica , Cloroplastos/genética , Ecotipo , Flujo Génico , Pool de Genes , Variación Genética , Genoma del Cloroplasto , Repeticiones de Microsatélite , Filogeografía
16.
New Phytol ; 201(3): 982-992, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24400905

RESUMEN

The origin of Cardamine flexuosa (Wavy Bittercress) has been a conundrum for more than six decades. Here we identify its parental species, analyse its genome structure in comparison to parental genomes and describe intergenomic structural variations in C. flexuosa. Genomic in situ hybridization (GISH) and comparative chromosome painting (CCP) uncovered the parental genomes and the chromosome composition of C. flexuosa and its presumed diploid progenitors. Cardamine flexuosa is an allotetraploid (2n = 4x = 32), originating from two diploid species, Cardamine amara and Cardamine hirsuta (2n = 2x = 16). The two parental species display almost perfectly conserved chromosomal collinearity for seven out of the eight chromosomes. A 13 Mb pericentric inversion distinguishes chromosome CA1 from CH1. A comparative cytomolecular map was established for C. flexuosa by CCP/GISH. Whereas conserved chromosome collinearity between the C. amara and C. hirsuta subgenomes might have promoted intergenomic rearrangements through homeologous recombination, only one reciprocal translocation between two homeologues has occurred since the origin of C. flexuosa. The genome of C. flexuosa demonstrates that allopolyploids can maintain remarkably stable subgenomes over 10(4) -10(5)  yr throughout a wide distribution range. By contrast, the rRNA genes underwent genome-specific elimination towards a diploid-like number of loci.


Asunto(s)
Cardamine/genética , Secuencia Conservada , Genoma de Planta/genética , Poliploidía , Pintura Cromosómica , Cromosomas de las Plantas/genética , ADN Ribosómico/genética , Diploidia , Sitios Genéticos/genética , Tamaño del Genoma/genética , Hibridación in Situ , Cariotipificación , Especificidad de la Especie , Translocación Genética
17.
Evolution ; 77(5): 1226-1244, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36820521

RESUMEN

Elucidating the evolution of recently diverged and polyploid-rich plant lineages may be challenging even with high-throughput sequencing, both for biological reasons and bioinformatic difficulties. Here, we apply target enrichment with genome skimming (Hyb-Seq) to unravel the evolutionary history of the Alyssum montanum-A. repens species complex. Reconstruction of phylogenetic relationships in diploids supported recent and rapid diversification accompanied by reticulation events. Of the 4 main clades identified among the diploids, 3 clades included species from the Alps, Apennine, and Balkan peninsulas, indicating close biogeographic links between these regions. We further focused on the clade distributed from the Western Alps to the Iberian Peninsula, which comprises numerous polyploids as opposed to a few diploids. Using a recently developed PhyloSD (phylogenomic subgenome detection) pipeline, we successfully tracked the ancestry of all polyploids. We inferred multiple polyploidization events that involved 2 closely related diploid progenitors, resulting into several sibling polyploids: 2 autopolyploids and 6 allopolyploids. The skewed proportions of major homeolog-types and the occurrence of some minor homeolog-types, both exhibiting geographic patterns, suggest introgression with the progenitors and other related diploids. Our study highlights a unique case of parallel polyploid speciation that was enhanced by ecological and geographic separation and provides an excellent resource for future studies of polyploid evolution.


Asunto(s)
Brassicaceae , Humanos , Filogenia , Brassicaceae/genética , Poliploidía , Diploidia
18.
Ecol Lett ; 15(12): 1439-48, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23006492

RESUMEN

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Asunto(s)
Biodiversidad , Variación Genética , Plantas/genética , Ecosistema , Geografía
20.
Am J Bot ; 98(11): 1887-904, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22052961

RESUMEN

PREMISE OF THE STUDY: The Apennine Peninsula, one of the three peninsulas of the European Mediterranean, is an important hotspot of genetic and species diversity, but studies devoted to plant evolution are still very scarce in this region. We studied the diploid-polyploid complex of Alyssum montanum-A. repens, focusing on Apennine and adjacent southwestern Alpine populations from southeastern France, with the aim of examining their taxonomic position and evolutionary patterns. METHODS: We employed AFLP markers and cpDNA sequences, along with cytotype determination using flow cytometry, and a multivariate morphometric approach. KEY RESULTS: The Italian and French populations formed two well-delimited groupings within the studied complex that were, in contrast to previous taxonomic treatments, clearly distinct from A. montanum. Populations from southeastern France represent A. orophilum, a previously described but abandoned species. Those from central and southern Italy correspond to A. diffusum, exhibiting high, geographically structured variation (central Apennines, Gargano, and southern Apennines/Calabria). This pattern coincides with hotspot refugial regions, in congruence with the "refugia-within-refugia" hypothesis, and is reflected here in the recognition of three subspecies within A. diffusum. CONCLUSIONS: We provide evidence for the presence of Mediterranean refugia for the studied Alyssum montanum-A. repens complex located in central and southern Italy, which, however, did not contribute to the postglacial colonization of Central Europe. Past extinctions, genetic bottlenecks, and recent expansion were inferred in Central Europe, while long-term accumulation of diversity as well as polyploidization occurred in the Apennines.


Asunto(s)
Brassicaceae/clasificación , Brassicaceae/genética , Evolución Molecular , Variación Genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Cloroplastos , Francia , Genética de Población , Italia , Filogeografía , Poliploidía , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA