Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 185(1): 228-239, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631808

RESUMEN

Optimal plant growth performance requires that the presence and action of growth signals, such as gibberellins (GAs), are coordinated with the availability of photo-assimilates. Here, we studied the links between GA biosynthesis and carbon availability, and the subsequent effects on growth. We established that carbon availability, light and dark cues, and the circadian clock ensure the timing and magnitude of GA biosynthesis and that disruption of these factors results in reduced GA levels and expression of downstream genes. Carbon-dependent nighttime induction of gibberellin 3-beta-dioxygenase 1 (GA3ox1) was severely hampered when preceded by reduced daytime light availability, leading specifically to reduced bioactive GA4 levels, and coinciding with a decline in leaf expansion rate during the night. We attributed this decline in leaf expansion mostly to reduced photo-assimilates. However, plants in which GA limitation was alleviated had significantly improved leaf expansion, demonstrating the relevance of GAs in growth control under varying carbon availability. Carbon-dependent expression of upstream GA biosynthesis genes (Kaurene synthase and gibberellin 20 oxidase 1, GA20ox1) was not translated into metabolite changes within this short timeframe. We propose a model in which the extent of nighttime biosynthesis of bioactive GA4 by GA3ox1 is determined by nighttime consumption of starch reserves, thus providing day-to-day adjustments of GA responses.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Carbono/metabolismo , Relojes Circadianos/fisiología , Giberelinas/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/fisiología , Variación Genética , Genotipo , Desarrollo de la Planta/efectos de los fármacos
2.
New Phytol ; 229(1): 85-93, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609884

RESUMEN

Rice coleoptile elongation under submergence guarantees fast seedling establishment in the field. We investigated the role of auxin in influencing the capacity of rice to produce a long coleoptile under water. In order to explore the complexity of auxin's role in coleoptile elongation, we used gene expression analysis, confocal microscopy of an auxin-responsive fluorescent reporter, gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), and T-DNA insertional mutants of an auxin transport protein. We show that a higher auxin availability in the coleoptile correlates with the final coleoptile length under submergence. We also identified the auxin influx carrier AUX1 as a component influencing this trait under submergence. The coleoptile tip is involved in the final length of rice varieties harbouring a long coleoptile. Our experimental results indicate that auxin biosynthesis and transport underlies the differential elongation between short and long coleoptile-harbouring japonica rice varieties.


Asunto(s)
Oryza , Cotiledón , Ácidos Indolacéticos , Oryza/genética , Plantones , Espectrometría de Masas en Tándem
3.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096855

RESUMEN

Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Poliaminas/metabolismo , Amina Oxidasa (conteniendo Cobre)/antagonistas & inhibidores , Amina Oxidasa (conteniendo Cobre)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Mutación , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Physiol Plant ; 165(4): 768-779, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29888535

RESUMEN

In tomato, auxin and gibberellins (GAs) interact with each other to drive fruit growth and development. While the role of auxin in directing GA biosynthesis and signal is already known, very little information has been obtained about GA-mediated control of auxin signalling and response. Interestingly, we show that gibberellic acid (GA3 ) is able to modify the expression of several auxin signalling genes in the partial auxin-insensitive diageotropica (dgt) mutant, suggesting that GAs may override the control of DGT on auxin signal. Procera (pro) mutation, which confers a constitutively active GA signal, enhances the effects of exogenous auxin, indicating that PRO may act as a negative effector of auxin responses in fruits. Indeed, transcript modulation of some auxin/indole acetic acid and auxin response factor genes in auxin-treated dgt/pro fruits suggests that PRO controls their expression possibly bypassing DGT. It was also shown that GA biosynthesis, in response to auxin treatment, is largely controlled by DGT. It is therefore conceivable that the DGT-mediated increase of active GAs in auxin-treated or pollinated fruits would promote PRO degradation, which in turn activates part of the auxin signalling cascade.


Asunto(s)
Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Giberelinas/farmacología , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Frutas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/genética , Mutación/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Physiol Plant ; 161(4): 486-501, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28767129

RESUMEN

ß-1,3-glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum). Paramylon granules were processed to obtain the linear fibrous structures capable to interact with tomato cell membrane. Modulation of hormone levels (abscisic acid, jasmonic acid and salicylic acid) and related physiological responses such as CO2 assimilation rate, stomatal and mesophyll conductance, intercellular CO2 concentration, transpiration rate, water-use efficiency, quantum yield of photosystem II and leaf water potential were investigated. The results indicate a clear dose-dependent effect of paramylon on the hormonal content of xylem sap, photosynthetic performance and dehydration tolerance. Paramylon has the capability to enhance plant defense capacity against abiotic stress, such as drought, by modulating the conductance to CO2 diffusion from air to the carboxylation sites and improving the water-use efficiency.


Asunto(s)
Euglena gracilis/química , Glucanos/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/metabolismo , Agua/metabolismo , Xilema/metabolismo , Dióxido de Carbono/metabolismo , Solanum lycopersicum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Xilema/efectos de los fármacos
6.
BMC Plant Biol ; 16: 77, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27039085

RESUMEN

BACKGROUND: In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. RESULTS: In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. CONCLUSIONS: A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.


Asunto(s)
Erysimum/crecimiento & desarrollo , Erysimum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocininas/metabolismo , Erysimum/genética , Etilenos/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Factores de Tiempo
7.
Plant Cell ; 25(10): 3760-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24096343

RESUMEN

A plant's eventual size depends on the integration of its genetic program with environmental cues, which vary on a daily basis. Both efficient carbon metabolism and the plant hormone gibberellin are required to guarantee optimal plant growth. Yet, little is known about the interplay between carbon metabolism and gibberellins that modulates plant growth. Here, we show that sugar starvation in Arabidopsis thaliana arising from inefficient starch metabolism at night strongly reduces the expression of ent-kaurene synthase, a key regulatory enzyme for gibberellin synthesis, the following day. Our results demonstrate that plants integrate the efficiency of photosynthesis over a period of days, which is transduced into a daily rate of gibberellin biosynthesis. This enables a plant to grow to a size that is compatible with its environment.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Giberelinas/biosíntesis , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oscuridad , Técnicas de Silenciamiento del Gen , Fotoperiodo , Fotosíntesis , Reguladores del Crecimiento de las Plantas/biosíntesis , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Almidón/metabolismo
8.
J Exp Bot ; 66(3): 945-56, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25422499

RESUMEN

Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lilium/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Lilium/genética , Lilium/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Explor Target Antitumor Ther ; 4(5): 1095-1103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023994

RESUMEN

Aim: Coronavirus disease 2019 (COVID-19) became pandemic on 11th March 2020 and it deeply stressed the healthcare system. Cancer patients represent a vulnerable population, so many recommendations have been approved to ensure optimal management. Clinical research was notably impacted by COVID too. This review aims to analyze the challenges occurred during a pandemic for the management of enrolled patients (enrollment, use of telemedicine visits, study procedures) and for the clinical trials system (from feasibility to selection visit, site initiation visit, monitorings, use of e-signature, deviations and discontinuations). Methods: The studies included in the present review were selected from PubMed/Google Scholar/ScienceDirect databases. Results: During the first phase of pandemic many clinical trials were suspended in accrual and, as the pandemic progressed, recommendations were established to guarantee the safety and the continuity of care of enrolled patients. In addition, lot of new strategies was found during the pandemic to reduce the negative consequences on clinical trial performance and to guarantee new opportunities of care in the respect of good clinical practice (GCP) in a bad scenario. Conclusions: Among all modifiers, investigators would prefer to maintain the positive ones such as pragmatic and simplified trial designs and protocols, reducing in-person visits when not necessary and to minimizing sponsor and contract research organizations (CROs) visits.

10.
Plants (Basel) ; 11(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807722

RESUMEN

Microalgal-based remediation is an ecofriendly and cost-effective system for wastewater treatment. This study evaluated the capacity of microalgae in the remediation of wastewater from cleaning process of smoked cigarette butts (CB). At laboratory scale, six strains (one from the family Scenedesmaceae, two Chlamydomonas debaryana and three Chlorella sorokiniana) were exposed to different CB wastewater dilutions to identify toxicity levels reflected in the alteration of microalgal physiological status and to determine the optimal conditions for an effective removal of contaminants. CB wastewater could impact on microalgal chlorophyll and carotenoid production in a concentration-dependent manner. Moreover, the resistance and remediation capacity did not only depend on the microalgal strain, but also on the chemical characteristics of the organic pollutants. In detail, nicotine was the most resistant pollutant to removal by the microalgae tested and its low removal correlated with the inhibition of photosynthetic pigments affecting microalgal growth. Concerning the optimal conditions for an effective bioremediation, this study demonstrated that the Chlamydomonas strain named F2 showed the best removal capacity to organic pollutants at 5% CB wastewater (corresponding to 25 butts L−1 or 5 g CB L−1) maintaining its growth and photosynthetic pigments at control levels.

11.
Plants (Basel) ; 11(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36145757

RESUMEN

In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m-2) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.

12.
Plant Physiol Biochem ; 176: 9-20, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35182963

RESUMEN

Nickel-induced changes in photosynthetic activity were investigated in three Ni-hyperaccumulating Odontarrhena species with increasing Ni tolerance and accumulation capacity, O. muralis, O. moravensis, and O. chalcidica. Plantlets were grown in hydroponics at increasing NiSO4 concentrations (0, 0.25, and 1 mM) for one week, and the effects of Ni on growth, metal accumulation, photosynthesis, and nitrogen (N) allocation to components of the photosynthetic apparatus were analysed. Nickel treatments in O. chalcidica, and O. moravensis to a lesser extent, increased not only the photochemical efficiency of photosystem II (PSII) and the CO2 assimilation rate, but also CO2 diffusion from the atmosphere to the carboxylation sites. These two species displayed a specific increase and/or rearrangement of the photosynthetic pigments and a higher leaf N allocation to the photosynthetic components in the presence of the metal. Odontarrhena muralis displayed a decrease in photosynthetic performance at the lowest Ni concentration due to a combination of both stomatal and non-stomatal limitations. Our data represent the first complete investigation of the effects of Ni on the photosynthetic machinery in Ni hyperaccumulating plants. Our findings clearly indicate a stimulatory, hormetic-like, effect of the metal on both biophysics and biochemistry of photosynthesis in the species with the highest hyperaccumulation capacity.


Asunto(s)
Brassicaceae , Clorofila , Níquel/farmacología , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta
13.
Plant Mol Biol ; 75(4-5): 431-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21279813

RESUMEN

A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA(19), GA(20) and GA(1) in dw2 seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA(12). Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC(1) progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.


Asunto(s)
Genes de Plantas , Helianthus/enzimología , Helianthus/genética , Oxigenasas de Función Mixta/genética , Mutación , Agrobacterium tumefaciens/genética , Secuencia de Bases , Cruzamiento , ADN de Plantas/genética , Diterpenos/metabolismo , Prueba de Complementación Genética , Ingeniería Genética , Giberelinas/metabolismo , Giberelinas/farmacología , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Oxigenasas de Función Mixta/metabolismo , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transformación Genética
14.
Plants (Basel) ; 10(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205214

RESUMEN

Azospirillum spp. are plant growth-promoting rhizobacteria (PGPR) that exert beneficial effects on plant growth and yield of agronomically important plant species. The aim of this study was to investigate the effects of a root treatment with Azospirillum baldaniorum Sp245 on hormones in xylem sap and physiological performance in purple basil (Ocimum basilicum L. cv. Red Rubin) plants grown under well-watered conditions and after removing water. Treatments with A. baldaniorum Sp245 included inoculation with viable cells (1·107 CFU mL-1) and addition of two doses of filtered culture supernatants (non-diluted 1·108 CFU mL-1, and diluted 1:1). Photosynthetic activity, endogenous level of hormones in xylem sap (salicylic acid, jasmonic acid, and abscisic acid), leaf pigments, leaf water potential, water-use efficiency (WUE), and drought tolerance were determined. Fluorescence and gas exchange parameters, as well as leaf water potential, showed that the highest dose of filtered culture supernatant improved both photosynthetic performance and leaf water status during water removal, associated with an increase in total pigments. Moreover, gas exchange analysis and carbon isotope discrimination found this bacterial treatment to be the most effective in inducing an increase of intrinsic and instantaneous WUE during water stress. We hypothesize that the benefits of bacterial treatments based on A. baldaniorum Sp245 are strongly correlated with the synthesis of phytohormones and the induction of plant-stress tolerance in purple basil.

15.
Sci Rep ; 11(1): 17010, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426588

RESUMEN

Iodine deficiency represents a public health problem worldwide. To increase the amount of iodine in the diet, biofortification strategies of plants have been tried. They rely on the exogenous administration of iodine to increase its absorption and accumulation. However, iodine is not stable in plants and can be volatilized as methyl iodide through the action of specific methyltransferases encoded by the HARMLESS TO OZONE LAYER (HOL) genes. The release of methyl iodide in the atmosphere represents a threat for the environment due to its ozone depletion potential. Rice paddies are among the strongest producers of methyl iodide. Thus, the agronomic approach of iodine biofortification is not appropriate for this crop, leading to further increases of iodine emissions. In this work, we used the genome editing CRISPR/Cas9 technology to knockout the rice HOL genes and investigate their function. OsHOL1 resulted a major player in methyl iodide production, since its knockout abolished the process. Moreover, its overexpression reinforced it. Conversely, knockout of OsHOL2 did not produce effects. Our experiments helped elucidating the function of the rice HOL genes, providing tools to develop new rice varieties with reduced iodine emissions and thus more suitable for biofortification programs without further impacting on the environment.


Asunto(s)
Técnicas de Inactivación de Genes , Genes de Plantas , Hidrocarburos Yodados/aislamiento & purificación , Oryza/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas , Luciferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis/genética , Hojas de la Planta/genética , Multimerización de Proteína , Fracciones Subcelulares/metabolismo
16.
Plants (Basel) ; 10(5)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922810

RESUMEN

Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m-2 d-1 may induce UV-B-specific signaling while 18.24 kJ m-2 d-1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa's geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.

17.
Environ Sci Pollut Res Int ; 28(7): 8539-8555, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33064280

RESUMEN

Treating biosolids from industrial, urban, and agricultural plants produces high amounts of water. After organic pollutants and non-essential heavy metals have been removed, these wastewaters are still rich in trace elements such as zinc (Zn), copper, or manganese (Mn) and have high conductivity and extremely variable pH. In this study, an isolated Chlorella sp. strain was grown for 21 days in nutrient solutions enriched with known amounts of Zn or Mn to obtain concentrations three (4.0 mg L-1)- and six (1.0 mg L-1)-fold higher than the basal medium levels, respectively, and over the limits permitted in aquatic environments. The green alga exhibited high tolerance to Zn and Mn, with the maximum abatement of Zn (28-30%) and Mn (60-63.5%) after 14 and 7 days of culture, respectively. Mn stimulated the growth rate and biomass production of Chlorella, which showed the highest carbon levels just in the first week. In both treatments, the nitrogen and protein contents remarkably increased. The photosynthetic pigments increased until the 14th day, with a higher extent in the Zn-enriched solution. An increasing photochemical efficiency was observed after 7 days of treatment, when the microalgae grown in Zn- and Mn-enriched solutions showed a slightly higher maximum photochemical efficiency than control. The autotrophic and controlled growth system adopted was designed to monitor the dynamic balance of Zn and Mn contents in the solutions and in the algal biomass. This system has proved to be useful in identifying the optimal nutritional conditions of the microalgae, along with the optimal temporal patterns of both metal biosorption capacity for water remediation and element bioaccumulation in the algal biomass.


Asunto(s)
Chlorella , Metales Pesados , Cobre , Manganeso , Zinc
18.
Sci Rep ; 11(1): 10965, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040101

RESUMEN

DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Cadmio/farmacología , ADN-Citosina Metilasas/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metiltransferasas/fisiología , Reguladores del Crecimiento de las Plantas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Citocininas/biosíntesis , Citocininas/genética , Metilación de ADN , ADN de Plantas/genética , ADN-Citosina Metilasas/deficiencia , ADN-Citosina Metilasas/genética , Genes de Plantas , Metiltransferasas/deficiencia , Metiltransferasas/genética , Mutación , Raíces de Plantas/crecimiento & desarrollo , ARN Mensajero/genética , ARN de Planta/genética , Contaminantes del Suelo/farmacología , Estrés Fisiológico/genética , Transcriptoma/efectos de los fármacos
19.
Plants (Basel) ; 10(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371594

RESUMEN

Natural elicitors from macroalgae may affect plant secondary metabolites. Ulvan is a sulfated heteropolysaccharide extracted from green seaweed, acting as both a plant biotic protecting agent, and a plant elicitor, leading to the synthesis of signal molecules. In this work, the aqueous extract of Ulva intestinalis L., mainly composed of ulvan, was used as foliar-spraying treatment and its eliciting effect was investigated in basil (Ocimum basilicum L.) and parsley (Petroselinum crispum L.). Antioxidant metabolites (polyphenols and carotenoids), volatile compounds (both in headspace emissions and hydrodistilled essential oils), and hormones (jasmonic acid, salicylic acid, salicylic acid 2-O-ß-D-glucoside, abscisic acid, and azelaic acid) were quantified. The foliar-spraying treatment with U. intestinalis extract increased salicylic acid and its ß-glucoside in parsley; in basil, it induced the accumulation of jasmonic and abscisic acids, indicating the presence of a priming effect. In basil, the elicitation caused a change of the essential oil (EO) chemotype from methyl eugenol/eugenol to epi-α-cadinol and increased sesquiterpenes. In parsley EO it caused a significant accumulation of 1,3,8-p-menthatriene, responsible of the typical "parsley-like" smell. In both species, the phenylpropanoids decreased in headspace and EO compositions, while the salicylic acid concentration increased; this could indicate a primarily defensive response to U. intestinalis extract. Due to the evidenced significant biological activity, U. intestinalis extract used as an elicitor may represent a suitable tool to obtain higher amounts of metabolites for optimizing plant flavor metabolites.

20.
Plant Physiol Biochem ; 148: 122-132, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31958679

RESUMEN

Salicylic acid (SA) is involved in several responses associated with plant development and defence against biotic and abiotic stress, but its role on photosynthetic regulation is still under debate. This work investigated energy conversion processes and related gene expression in the brachytic mutant of sunflower lingering hope (linho). This mutant was characterized by a higher ratio between the free SA form and its conjugate form SA O-ß-D-glucoside (SAG) compared to wild type (WT), without significant changes in the endogenous level of abscisic acid and hydrogen peroxide. The mutant showed an inhibition of photosynthesis due to a combination of both stomatal and non-stomatal limitations, although the latter seemed to play a major role. The reduced carboxylation efficiency was associated with a down-regulation of the gene expression for both the large and small subunits of Rubisco and the Rubisco activase enzyme. Moreover, linho showed an alteration of photosystem II (PSII) functionality, with reduced PSII photochemistry, increased PSII excitation pressure and decreased thermal energy dissipation of excessive light energy. These responses were associated with a lower photosynthetic pigments concentration and a reduced expression of genes encoding for light-harvesting chlorophyll a/b binding proteins (i.e. HaLhcA), chlorophyll binding subunits of PSII proteins (i.e. HaPsbS and HaPsbX), phytoene synthase enzyme and a different expression level for genes related to PSII repair cycle, such as HaPsbA and HaPsbD. The concomitant stimulation of respiratory metabolism, suggests that linho activated a coordinate modulation of chloroplast and mitochondria activities to compensate the energy imbalance and regulate energy conversion processes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Helianthus , Ácido Salicílico , Clorofila/metabolismo , Helianthus/genética , Helianthus/metabolismo , Mutación , Fotosíntesis/genética , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ácido Salicílico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA