Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Molecules ; 28(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375132

RESUMEN

Graphene oxide (GO) properties make it a promising material for graphene-based applications in areas such as biomedicine, agriculture, and the environment. Thus, its production is expected to increase, reaching hundreds of tons every year. One GO final destination is freshwater bodies, possibly affecting the communities of these systems. To clarify the effect that GO may impose in freshwater communities, a fluvial biofilm scraped from submerged river stones was exposed to a range (0.1 to 20 mg/L) of GO concentrations during 96 h. With this approach, we hypothesized that GO can: (1) cause mechanical damage and morphological changes in cell biofilms; (2) interfere with the absorption of light by biofilms; (3) and generate oxidative stress, causing oxidative damage and inducing biochemical and physiological alterations. Our results showed that GO did not inflict mechanical damage. Instead, a positive effect is proposed, linked to the ability of GO to bind cations and increase the micronutrient availability to biofilms. High concentrations of GO increased photosynthetic pigment (chlorophyll a, b, and c, and carotenoids) content as a strategy to capture the available light more effectively as a response to the shading effect. A significant increase in the enzymatic (SOD and GSTs activity) and low molecular weight (lipids and carotenoids) antioxidant response was observed, that efficiently reduced oxidative stress effects, reducing the level of peroxidation, and preserving membrane integrity. Being complex entities, biofilms are more similar to environmental communities and may provide more accurate information to evaluate the impact of GO in aquatic systems.


Asunto(s)
Grafito , Grafito/farmacología , Clorofila A/farmacología , Óxidos/farmacología , Ríos , Biopelículas , Carotenoides/farmacología
2.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408143

RESUMEN

The world population growth and average life expectancy rise have increased the number of people suffering from non-communicable diseases, namely osteoarthritis, a disorder that causes a significant increase in the years lived with disability. Many people who suffer from osteoarthritis undergo replacement surgery. Despite the relatively high success rate, around 10% of patients require revision surgeries, mostly because existing implant technologies lack sensing devices capable of monitoring the bone-implant interface. Among the several monitoring methodologies already proposed as substitutes for traditional imaging methods, cosurface capacitive sensing systems hold the potential to monitor the bone-implant fixation states, a mandatory capability for long-term implant survival. A multifaceted study is offered here, which covers research on the following points: (1) the ability of a cosurface capacitor network to effectively monitor bone loosening in extended peri-implant regions and according to different stimulation frequencies; (2) the ability of these capacitive architectures to provide effective sensing in interfaces with hydroxyapatite-based layers; (3) the ability to control the operation of cosurface capacitive networks using extracorporeal informatic systems. In vitro tests were performed using a web-based network sensor composed of striped and interdigitated capacitive sensors. Hydroxyapatite-based layers have a minor effect on determining the fixation states; the effective operation of a sensor network-based solution communicating through a web server hosted on Raspberry Pi was shown. Previous studies highlight the inability of current bone-implant fixation monitoring methods to significantly reduce the number of revision surgeries, as well as promising results of capacitive sensing systems to monitor micro-scale and macro-scale bone-interface states. In this study, we found that extracorporeal informatic systems enable continuous patient monitoring using cosurface capacitive networks with or without hydroxyapatite-based layers. Findings presented here represent significant advancements toward the design of future multifunctional smart implants.


Asunto(s)
Durapatita , Osteoartritis , Trasplante Óseo/métodos , Humanos , Prótesis e Implantes , Reoperación/métodos
3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142540

RESUMEN

The activation of T helper (Th) lymphocytes is necessary for the adaptive immune response as they contribute to the stimulation of B cells (for the secretion of antibodies) and macrophages (for phagocytosis and destruction of pathogens) and are necessary for cytotoxic T-cell activation to kill infected target cells. For these issues, Th lymphocytes must be converted into Th effector cells after their stimulation through their surface receptors TCR/CD3 (by binding to peptide-major histocompatibility complex localized on antigen-presenting cells) and the CD4 co-receptor. After stimulation, Th cells proliferate and differentiate into subpopulations, like Th1, Th2 or Th17, with different functions during the adaptative immune response. Due to the central role of the activation of Th lymphocytes for an accurate adaptative immune response and considering recent preclinical advances in the use of nanomaterials to enhance T-cell therapy, we evaluated in vitro the effects of graphene oxide (GO) and two types of reduced GO (rGO15 and rGO30) nanostructures on the Th2 lymphocyte cell line SR.D10. This cell line offers the possibility of studying their activation threshold by employing soluble antibodies against TCR/CD3 and against CD4, as well as the simultaneous activation of these two receptors. In the present study, the effects of GO, rGO15 and rGO30 on the activation/proliferation rate of these Th2 lymphocytes have been analyzed by studying cell viability, cell cycle phases, intracellular content of reactive oxygen species (ROS) and cytokine secretion. High lymphocyte viability values were obtained after treatment with these nanostructures, as well as increased proliferation in the presence of rGOs. Moreover, rGO15 treatment decreased the intracellular ROS content of Th2 cells in all stimulated conditions. The analysis of these parameters showed that the presence of these GO and rGO nanostructures did not alter the response of Th2 lymphocytes.


Asunto(s)
Activación de Linfocitos , Nanoestructuras , Anticuerpos , Antígenos CD4/metabolismo , Citocinas/metabolismo , Grafito , Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores , Células TH1 , Células Th17 , Células Th2
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206699

RESUMEN

Graphene and its derivatives are very promising nanomaterials for biomedical applications and are proving to be very useful for the preparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materials (GBM) appears to be critical in promoting regeneration, thus, the study of this response is essential before they are used to prepare any type of scaffold. Another relevant factor is the variability of the GBM surface chemistry, namely the type and quantity of oxygen functional groups, which may have an important effect on cell behavior. The response of RAW-264.7 macrophages to graphene oxide (GO) and two types of reduced GO, rGO15 and rGO30, obtained after vacuum-assisted thermal treatment of 15 and 30 min, respectively, was evaluated by analyzing the uptake of these nanostructures, the intracellular content of reactive oxygen species, and specific markers of the proinflammatory M1 phenotype, such as CD80 expression and secretion of inflammatory cytokines TNF-α and IL-6. Our results demonstrate that GO reduction resulted in a decrease of both oxidative stress and proinflammatory cytokine secretion, significantly improving its biocompatibility and potential for the preparation of 3D scaffolds able of triggering the appropriate immune response for tissue regeneration.


Asunto(s)
Grafito/metabolismo , Macrófagos/fisiología , Oxidación-Reducción , Estrés Oxidativo , Temperatura , Animales , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Expresión Génica , Grafito/química , Mediadores de Inflamación/metabolismo , Ratones , Microscopía de Fuerza Atómica , Nanoestructuras/química , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Análisis Espectral
5.
Artículo en Inglés | MEDLINE | ID: mdl-32058044

RESUMEN

The modern technology brought new engineering materials (e.g. nanostructured materials) with advantageous characteristics such as a high capacity to decontaminate water from pollutants (for example metal(loid)s). Among those innovative materials the synthesis of nanostructured materials (NSMs) based on graphene as graphene oxide (GO) functionalized with polyethyleneimine (GO-PEI) had a great success due to their metal removal capacity from water. However, research dedicated to environmental risks related to the application of these materials is still non-existent. To evaluate the impacts of such potential stressors, benthic species can be a good model as they are affected by several environmental constraints. Particularly, the mussel Mytilus galloprovincialis has been identified by several authors as a bioindicator that responds quickly to environmental disturbances, with a wide spatial distribution and economic relevance. Thus, the present study aimed to evaluate the impacts caused in M. galloprovincialis by seawater previously contaminated by Hg and decontaminated using GO-PEI. For this, histopathological and biochemical alterations were examined. This study demonstrated that mussels exposed to the contaminant (Hg), the decontaminant (GO-PEI) and the combination of both (Hg + GO-PEI) presented an increment of histopathological, oxidative stress and metabolic alterations if compared to organisms under remediated seawater and control conditions The present findings highlight the possibility to remediate seawater with nanoparticles for environmental safety purposes.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Grafito/química , Mercurio/aislamiento & purificación , Mytilus/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Polietileneimina/farmacología , Agua de Mar/análisis , Animales , Mercurio/análisis , Mercurio/toxicidad , Mytilus/crecimiento & desarrollo , Mytilus/metabolismo , Polietileneimina/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
6.
J Mater Sci Mater Med ; 31(8): 69, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32705408

RESUMEN

In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.


Asunto(s)
Cartílago/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Biomimética , Cartílago/efectos de los fármacos , Cartílago/fisiología , Bovinos , Supervivencia Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Galvanoplastia/métodos , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Microtecnología/métodos , Poliésteres/química , Poliésteres/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
7.
Chemistry ; 24(59): 15903-15911, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30089194

RESUMEN

The supercritical carbon dioxide (scCO2 ) synthesis of non-reduced graphene oxide (GO) aerogels from dispersions of GO in ethanol is here reported as a low-cost, efficient, and environmentally friendly process. The preparation is carried out under the mild conditions of 333 K and 20 MPa. The high aspect ratio of the used GO sheets (ca. 30 µm lateral dimensions) allowed the preparation of aerogel monoliths by simultaneous scCO2 gelation and drying. Solid-state characterization results indicate that a thermally-stable mesoporous non-reduced GO aerogel was obtained by using the supercritical procedure, keeping most of the surface oxygenated groups on the GO sheets, thus, facilitating further functionalization. Moreover, the monoliths have a very low density, high specific surface area, and excellent mechanical integrity; characteristics which rival those of most light-weight reduced graphene aerogels reported in the literature.

8.
Sensors (Basel) ; 16(1)2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26805845

RESUMEN

This paper reviews recent advances in graphene-based biosensors development in order to obtain smaller and more portable devices with better performance for earlier cancer detection. In fact, the potential of Graphene for sensitive detection and chemical/biological free-label applications results from its exceptional physicochemical properties such as high electrical and thermal conductivity, aspect-ratio, optical transparency and remarkable mechanical and chemical stability. Herein we start by providing a general overview of the types of graphene and its derivatives, briefly describing the synthesis procedure and main properties. It follows the reference to different routes to engineer the graphene surface for sensing applications with organic biomolecules and nanoparticles for the development of advanced biosensing platforms able to detect/quantify the characteristic cancer biomolecules in biological fluids or overexpressed on cancerous cells surface with elevated sensitivity, selectivity and stability. We then describe the application of graphene in optical imaging methods such as photoluminescence and Raman imaging, electrochemical sensors for enzymatic biosensing, DNA sensing, and immunosensing. The bioquantification of cancer biomarkers and cells is finally discussed, particularly electrochemical methods such as voltammetry and amperometry which are generally adopted transducing techniques for the development of graphene based sensors for biosensing due to their simplicity, high sensitivity and low-cost. To close, we discuss the major challenges that graphene based biosensors must overcome in order to reach the necessary standards for the early detection of cancer biomarkers by providing reliable information about the patient disease stage.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles , Grafito/química , Neoplasias/diagnóstico , Imagen Óptica , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Imagen Óptica/instrumentación , Imagen Óptica/métodos
9.
Mater Today Bio ; 26: 101059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38693996

RESUMEN

Despite the immense need for effective treatment of spinal cord injury (SCI), no successful repair strategy has yet been clinically implemented. Multifunctional biomaterials, based on porcine adipose tissue-derived extracellular matrix (adECM) and reduced graphene oxide (rGO), were recently shown to stimulate in vitro neural stem cell growth and differentiation. Nevertheless, their functional performance in clinically more relevant in vivo conditions remains largely unknown. Before clinical application of these adECM-rGO nanocomposites can be considered, a rigorous assessment of the cytotoxicity and biocompatibility of these biomaterials is required. For instance, xenogeneic adECM scaffolds could still harbour potential immunogenicity following decellularization. In addition, the toxicity of rGO has been studied before, yet often in experimental settings that do not bear relevance to regenerative medicine. Therefore, the present study aimed to assess both the in vitro as well as in vivo safety of adECM and adECM-rGO scaffolds. First, pulmonary, renal and hepato-cytotoxicity as well as macrophage polarization studies showed that scaffolds were benign invitro. Then, a laminectomy was performed at the 10th thoracic vertebra, and scaffolds were implanted directly contacting the spinal cord. For a total duration of 6 weeks, animal welfare was not negatively affected. Histological analysis demonstrated the degradation of adECM scaffolds and subsequent tissue remodeling. Graphene-based scaffolds showed a very limited fibrous encapsulation, while rGO sheets were engulfed by foreign body giant cells. Furthermore, all scaffolds were infiltrated by macrophages, which were largely polarized towards a pro-regenerative phenotype. Lastly, organ-specific histopathology and biochemical analysis of blood did not reveal any adverse effects. In summary, both adECM and adECM-rGO implants were biocompatible upon laminectomy while establishing a pro-regenerative microenvironment, which justifies further research on their therapeutic potential for treatment of SCI.

10.
J Mater Sci Mater Med ; 24(12): 2787-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23963685

RESUMEN

Although commercially-available poly(methyl methacrylate) bone cement is widely used in total joint replacements, it has many shortcomings, a major one being that it does not osseointegrate with the contiguous structures. We report on the in vitro evaluation of the biocompatibility of modified formulations of the cement in which a high loading of hydroxyapatite (67 wt/wt%), an extra amount of benzoyl peroxide, and either 0.1 wt/wt% functionalized carbon nanotubes or 0.5 wt/wt% graphene oxide was added to the cement powder and an extra amount of dimethyl-p-toluidiene was added to the cement's liquid monomer. This evaluation was done using mouse L929 fibroblasts and human Saos-2 osteoblasts. For each combination of cement formulation and cell type, there was high cell viability, low apoptosis, and extensive spread on disc surfaces. Thus, these two cement formulations may have potential for use in the clinical setting.


Asunto(s)
Materiales Biocompatibles/química , Cementos para Huesos/química , Nanoestructuras/química , Polimetil Metacrilato/química , Animales , Apoptosis , Peróxido de Benzoílo/química , Carbono/química , Línea Celular , Durapatita/química , Fibroblastos/metabolismo , Grafito/química , Humanos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Ratones , Nanotubos de Carbono/química , Oseointegración , Osteoblastos/citología , Osteoblastos/metabolismo , Óxidos/química , Propiedades de Superficie , Resistencia a la Tracción , Toluidinas/química
11.
Biomater Adv ; 148: 213353, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36848743

RESUMEN

A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.


Asunto(s)
Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Andamios del Tejido/química , Anisotropía , Calidad de Vida , Ingeniería de Tejidos/métodos , Traumatismos de la Médula Espinal/cirugía
12.
ACS Appl Bio Mater ; 6(12): 5541-5554, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37947854

RESUMEN

Electrospinning has been widely employed to fabricate complex extracellular matrix-like microenvironments for tissue engineering due to its ability to replicate structurally biomimetic micro- and nanotopographic cues. Nevertheless, these nanofibrous structures are typically either confined to bidimensional systems or confined to three-dimensional ones that are unable to provide controlled multiscale patterns. Thus, an electrospinning modality was used in this work to fabricate chondrocyte-laden nanofibrous scaffolds with highly customizable three-dimensional (3D) architectures in an automated manner, with the ultimate goal of recreating a suitable 3D scaffold for articular cartilage tissue engineering. Three distinct architectures were designed and fabricated by combining multiple nanofibrous and chondrocyte-laden hydrogel layers and tested in vitro in a compression bioreactor system. Results demonstrated that it was possible to precisely control the placement and alignment of electrospun polycaprolactone and gelatin nanofibers, generating three unique architectures with distinctive macroscale porosity, water absorption capacity, and mechanical properties. The architecture organized in a lattice-like fashion was highly porous with substantial pore interconnectivity, resulting in a high-water absorption capacity but a poor compression modulus and relatively weaker energy dissipation capacity. The donut-like 3D geometry was the densest, with lower swelling, but the highest compression modulus and improved energy dissipation ability. The third architecture combined a lattice and donut-like fibrous arrangement, exhibiting intermediary behavior in terms of porosity, water absorption, compression modulus, and energy dissipation capacity. The properties of the donut-like 3D architecture demonstrated great potential for articular cartilage tissue engineering, as it mimicked key topographic, chemical, and mechanical characteristics of chondrocytes' surrounding environment. In fact, the combination of these architectural features with a dynamically compressive mechanical stimulus triggered the best in vitro results in terms of viability and biosynthetic production.


Asunto(s)
Condrocitos , Nanofibras , Andamios del Tejido/química , Porosidad , Nanofibras/química , Agua
13.
J Biomed Mater Res A ; 111(7): 950-961, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36519714

RESUMEN

One of the established tissue engineering strategies relies on the fabrication of appropriate materials architectures (scaffolds) that mimic the extracellular matrix (ECM) and assist the regeneration of living tissues. Fibrous structures produced by electrospinning have been widely used as reliable ECM templates but their two-dimensional structure restricts, in part, cell infiltration and proliferation. A recent technique called thermally-induced self-agglomeration (TISA) allowed to alleviate this drawback by rearranging the 2D electrospun membranes into highly functional 3D porous-fibrous systems. Following this trend, the present research focused on preparing polycaprolactone/chitosan blends by electrospinning, to then convert them into 3D structures by TISA. By adding different amounts of chitosan, it was possible to accurately modulate the physicochemical properties of the obtained 3D nanofibrous scaffolds, leading to highly porous constructs with distinct morphologic and mechanical features. Viability and proliferation studies using adult human chondrocytes also revealed that the biocompatibility of the scaffolds was not impaired after 28 days of cell culture, highlighting their potential to be included into musculoskeletal tissue engineering applications, particularly cartilage repair.


Asunto(s)
Quitosano , Nanofibras , Adulto , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanofibras/química , Porosidad , Poliésteres/química
14.
Adv Healthc Mater ; 12(26): e2300828, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312636

RESUMEN

Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.


Asunto(s)
Nanotubos de Carbono , Células-Madre Neurales , Nanotubos de Carbono/química , Ingeniería de Tejidos , Diferenciación Celular
15.
Nanoscale ; 15(42): 17173-17183, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37853851

RESUMEN

Graphene oxide (GO) and reduced graphene oxide (rGO) have been widely used in the field of tissue regeneration and various biomedical applications. In order to use these nanomaterials in organisms, it is imperative to possess an understanding of their impact on different cell types. Due to the potential of these nanomaterials to enter the bloodstream, interact with the endothelium and accumulate within diverse tissues, it is highly relevant to probe them when in contact with the cellular components of the vascular system. Endothelial progenitor cells (EPCs), involved in blood vessel formation, have great potential for tissue engineering and offer great advantages to study the possible angiogenic effects of biomaterials. Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates vascular permeability, mainly activating VEGFR2 on endothelial cells. The effects of GO and two types of reduced GO, obtained after vacuum-assisted thermal treatment for 15 min (rGO15) and 30 min (rGO30), on porcine endothelial progenitor cells (EPCs) functionality were assessed by analyzing the nanomaterial intracellular uptake, reactive oxygen species (ROS) production and VEGFR2 expression by EPCs. The results evidence that short annealing (15 and 30 minutes) at 200 °C of GO resulted in the mitigation of both the increased ROS production and decline in VEGFR2 expression of EPCs upon GO exposure. Interestingly, after 72 hours of exposure to rGO30, VEGFR2 was higher than in the control culture, suggesting an early angiogenic potential of rGO30. The present work reveals that discrete variations in the reduction of GO may significantly affect the response of porcine endothelial progenitor cells.


Asunto(s)
Células Progenitoras Endoteliales , Nanoestructuras , Animales , Porcinos , Células Progenitoras Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Nanoestructuras/toxicidad
16.
Biomater Adv ; 148: 213351, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36842343

RESUMEN

Enthralling evidence of the potential of graphene-based materials for neural tissue engineering is motivating the development of scaffolds using various structures related to graphene such as graphene oxide (GO) or its reduced form. Here, we investigated a strategy based on reduced graphene oxide (rGO) combined with a decellularized extracellular matrix from adipose tissue (adECM), which is still unexplored for neural repair and regeneration. Scaffolds containing up to 50 wt% rGO relative to adECM were prepared by thermally induced phase separation assisted by carbodiimide (EDC) crosslinking. Using partially reduced GO enables fine-tuning of the structural interaction between rGO and adECM. As the concentration of rGO increased, non-covalent bonding gradually prevailed over EDC-induced covalent conjugation with the adECM. Edge-to-edge aggregation of rGO favours adECM to act as a biomolecular physical crosslinker to rGO, leading to the softening of the scaffolds. The unique biochemistry of adECM allows neural stem cells to adhere and grow. Importantly, high rGO concentrations directly control cell fate by inducing the differentiation of both NE-4C cells and embryonic neural progenitor cells into neurons. Furthermore, primary astrocyte fate is also modulated as increasing rGO boosts the expression of reactivity markers while unaltering the expression of scar-forming ones.


Asunto(s)
Grafito , Ingeniería de Tejidos , Grafito/química , Neuronas , Matriz Extracelular/química
17.
J Nanosci Nanotechnol ; 12(8): 6686-92, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22962807

RESUMEN

Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.

18.
Environ Pollut ; 299: 118869, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063544

RESUMEN

Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.


Asunto(s)
Grafito , Poliquetos , Contaminantes Químicos del Agua , Animales , Grafito/metabolismo , Grafito/toxicidad , Peroxidación de Lípido , Poliquetos/metabolismo , Contaminantes Químicos del Agua/metabolismo
19.
ACS Nano ; 16(9): 13430-13467, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36000717

RESUMEN

Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.


Asunto(s)
Grafito , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Grafito/farmacología , Grafito/uso terapéutico , Humanos , Preparaciones Farmacéuticas , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico
20.
Environ Sci Pollut Res Int ; 29(22): 32967-32987, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35022978

RESUMEN

Mercury (Hg) is one of the most hazardous pollutants, due to its toxicity, biological magnification and worldwide persistence in aquatic systems. Thus, new efficient nanotechnologies (e.g. graphene oxide functionalized with polyethyleneimine (GO-PEI)) have been developed to remove this metal from the water. Aquatic environments, in particular transitional systems, are also subjected to disturbances resulting from climate change, such as salinity shifts. Salinity is one of the most relevant factors that influences the distribution and survival of aquatic species such as mussels. To our knowledge, no studies assessed the ecotoxicological impairments induced in marine organisms exposed to remediate seawater (RSW) under different salinity levels. For this, the focus of the present study was to evaluate the effects of seawater previously contaminated with Hg and remediated with GO-PEI, using the species Mytilus galloprovincialis, maintained at three different salinities (30, 20 and 40). The results obtained demonstrated similar histopathological and metabolic alterations, oxidative stress and neurotoxicity in mussels under RSW treatment at stressful salinity conditions (20 and 40) in comparison to control salinity (30). On the other hand, the present findings revealed toxicological effects including cellular damage and histopathological impairments in mussels exposed to Hg contaminated seawater in comparison to non-contaminated ones, at each salinity level. Overall, these results confirm the high efficiency of GO-PEI to sorb Hg from water with no noticeable toxic effects even under different salinities, leading to consider it a promising eco-friendly approach to remediate contaminated water.


Asunto(s)
Mercurio , Mytilus , Contaminantes Químicos del Agua , Animales , Mercurio/metabolismo , Mytilus/metabolismo , Salinidad , Agua de Mar , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA