Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30348661

RESUMEN

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Asunto(s)
Antifúngicos/farmacología , Descubrimiento de Drogas/métodos , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Quinolinas/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Itraconazol/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Paracoccidioides/clasificación , Paracoccidioides/aislamiento & purificación , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/microbiología , Análisis de Secuencia de Proteína
2.
BMC Biotechnol ; 17(1): 71, 2017 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-28888227

RESUMEN

BACKGROUND: Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon. RESULTS: This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae. CONCLUSIONS: Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/genética , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/genética , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Propionibacterium/enzimología , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo
3.
Pest Manag Sci ; 75(5): 1295-1303, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30350447

RESUMEN

BACKGROUND: Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS: We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION: We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.


Asunto(s)
Agaricales/efectos de los fármacos , Agaricales/fisiología , Benzamidas/síntesis química , Benzamidas/farmacología , Cacao/microbiología , Proteínas Mitocondriales/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/antagonistas & inhibidores , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Benzamidas/química , Técnicas de Química Sintética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Relación Estructura-Actividad
4.
Bioinformation ; 11(5): 224-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124565

RESUMEN

The herbicide diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is used in many agricultural crops and non-crop areas worldwide, leading to the pollution of the aquatic environment by soil leaching. White rot fungi and its lignin modifying enzymes, peroxidases and laccases, are responsible for its degradation. Therefore, it is of interest to explore the potential use of Ceriporiopsis subvermispora laccase (CersuLac1) in the biotransformation of this herbicide by using its enzyme laccase. However, the structure of laccase from Ceriporiopsis subvermispora is still unknown. Hence, a model of laccase was constructed using homology modeling. The model was further used to dock p-methylbenzoate in the presence of four copper ions to analyze molecular basis of its binding and interaction. The ligand-protein interaction is stereo-chemically favorable in nature. The presence of the single protonated Lys457 was necessary for catalysis, being coordinated by a cupper ion. The best pose of diuron on CersuLac1 has a theoretical Ki of 2.91 mM. This is comparable to the KM values for laccases from other organisms with similar compounds. Thus, we document the insights for the potential use of laccase from Ceriporiopsis subvermispora in the biotransfrormation of diuron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA