Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836590

RESUMEN

Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2 By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.


Asunto(s)
Carcinógenos/toxicidad , NADPH Oxidasa 4/genética , Neoplasias/inducido químicamente , Animales , Núcleo Celular/metabolismo , Citosol/metabolismo , Daño del ADN , Inestabilidad Genómica , Ratones , NADPH Oxidasa 4/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oxidación-Reducción , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Subunidades de Proteína , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal
2.
Anticancer Drugs ; 27(10): 953-959, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27669171

RESUMEN

Small-molecule inhibitors of Inhibitor of Apoptosis proteins such as Smac mimetics have been reported to provide a promising tool to sensitize glioblastoma (GBM) cells to cytotoxic therapies including chemotherapeutic drugs. However, the underlying molecular mechanisms of action have not yet been fully unraveled. In the present study, we therefore investigated the role of reactive oxygen species (ROS) in the regulation of Smac mimetic/temozolomide (TMZ)-induced cell death in GBM cells. Here, we show that the Smac mimetic BV6 and TMZ act in concert to stimulate the production of both cytosolic and mitochondrial ROS. This accumulation of ROS contributes toward the activation of the proapoptotic factor BAX upon BV6/TMZ cotreatment as several ROS scavengers (i.e. N-acetyl-L-cysteine, MnTBAP, or α-tocopherol) protect GBM cells against BV6/TMZ-mediated BAX activation. In addition, ROS scavengers significantly rescue GBM cells from BV6/TMZ-triggered cell death, indicating that ROS generation is required for the induction of cell death. By showing that ROS play an important role in the regulation of Smac mimetic/TMZ-induced cell death, our work sheds light on the crucial role of the oxidative system in the cooperative antitumor activity of Smac mimetic/TMZ combination therapy against GBM cells.

3.
J Cell Sci ; 125(Pt 16): 3776-89, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22553206

RESUMEN

P2X7 receptors function as ATP-gated cation channels but also interact with other proteins as part of a larger signalling complex to mediate a variety of downstream responses that are dependent upon the cell type in which they are expressed. Receptor-mediated membrane permeabilization to large molecules precedes the induction of cell death, but remains poorly understood. The mechanisms that underlie differential sensitivity to NAD are also unknown. By studying alternative variants of the mouse P2X7 receptor we show that sensitivity to NAD is mediated through the P2X7k variant, which has a much more restricted distribution than the P2X7a receptor, but is expressed in T lymphocytes. The altered N-terminus and TM1 of the P2X7k receptor enhances the stability of the active state of this variant compared with P2X7a, thereby increasing the efficacy of NAD-dependent ADP ribosylation as measured by ethidium uptake, a rise in intracellular Ca(2+) and the activation of inward currents. Co-expression of P2X7k and P2X7a receptors reduced NAD sensitivity. P2X7k-receptor-mediated ethidium uptake was also triggered by much lower BzATP concentrations and was insensitive to the P451L single nucleotide polymorphism. P2X7k-receptor-mediated ethidium uptake occurred independently of pannexin-1 suggesting a pathway intrinsic to the receptor. Only for the P2X7aL451 receptor could we resolve a component of dye uptake dependent upon pannexin-1. Signalling occurred downstream of the activation of caspases rather than involving direct cross talk between the channels. However, an in situ proximity assay showed close association between P2X7 receptors and pannexin-1, which would facilitate ATP efflux through pannexin-1 acting in an autocrine manner.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Adenosina Difosfato/metabolismo , Animales , Muerte Celular/genética , Línea Celular , Conexinas/biosíntesis , Conexinas/genética , Etidio/farmacocinética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas , Agonistas del Receptor Purinérgico P2X/metabolismo , ARN Interferente Pequeño/genética , Receptores Purinérgicos P2X7/biosíntesis , Receptores Purinérgicos P2X7/genética , Transducción de Señal , Linfocitos T/metabolismo , Transfección
4.
J Immunother Cancer ; 7(1): 191, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324216

RESUMEN

BACKGROUND: Glucocorticoid-induced TNFR-related protein (TNFRSF18, GITR, CD357), expressed by T cells, and its ligand (TNFSF18, GITRL), expressed by myeloid populations, provide co-stimulatory signals that boost T cell activity. Due to the important role that GITR plays in regulating immune functions, agonistic stimulation of GITR is a promising therapeutic concept. Multiple strategies to induce GITR signaling have been investigated. The limited clinical efficacy of antibody-based GITR agonists results from structural and functional characteristics of antibodies that are unsuitable for stimulating the well-defined trimeric members of the TNFRSF. METHODS: To overcome limitations of antibody-based TNFRSF agonists, we have developed HERA-GITRL, a fully human hexavalent TNF receptor agonist (HERA) targeting GITR and mimicking the natural signaling concept. HERA-GITRL is composed of a trivalent but single-chain GITRL-receptor-binding-domain (scGITRL-RBD) unit fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. A specific mouse surrogate, mmHERA-GITRL, was also generated to examine in vivo activity in respective mouse tumor models. RESULTS: For functional characterization of HERA-GITRL in vitro, human immune cells were isolated from healthy-donor blood and stimulated with anti-CD3 antibody in the presence of HERA-GITRL. Consistently, HERA-GITRL increased the activity of T cells, including proliferation and differentiation, even in the presence of regulatory T cells. In line with these findings, mmHERA-GITRL enhanced antigen-specific clonal expansion of both CD4+ (OT-II) and CD8+ (OT-I) T cells in vivo while having no effect on non-specific T cells. In addition, mmHERA-GITRL showed single-agent anti-tumor activity in two subcutaneous syngeneic colon cancer models (CT26wt and MC38-CEA). Importantly, this activity is independent of its FcγR-binding functionality, as both mmHERA-GITRL with a functional Fc- and a silenced Fc-domain showed similar tumor growth inhibition. Finally, in a direct in vitro comparison to a bivalent clinical benchmark anti-GITR antibody and a trivalent GITRL, only the hexavalent HERA-GITRL showed full biological activity independent of additional crosslinking. CONCLUSION: In this manuscript, we describe the development of HERA-GITRL, a true GITR agonist with a clearly defined mechanism of action. By clustering six receptor chains in a spatially well-defined manner, HERA-GITRL induces potent agonistic activity without being dependent on additional FcγR-mediated crosslinking.


Asunto(s)
Receptores del Factor de Necrosis Tumoral/agonistas , Anticuerpos de Cadena Única/administración & dosificación , Linfocitos T Reguladores/inmunología , Factores de Necrosis Tumoral/química , Animales , Línea Celular Tumoral , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Activación de Linfocitos , Macaca fascicularis , Ratones , Proteínas Recombinantes de Fusión/inmunología , Transducción de Señal , Anticuerpos de Cadena Única/inmunología , Factores de Necrosis Tumoral/metabolismo
5.
Front Oncol ; 8: 387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30298117

RESUMEN

Tumor necrosis factor receptor superfamily member 7 (TNFRSF7, CD27), expressed primarily by T cells, and its ligand CD27L (TNFSF7, CD70) provide co-stimulatory signals that boost T cell activation, differentiation, and survival. Agonistic stimulation of CD27 is therefore a promising therapeutic concept in immuno-oncology intended to boost and sustain T cell driven anti-tumor responses. Endogenous TNFSF/TNFRSF-based signal transmission is a structurally well-defined event that takes place during cell-to-cell-based contacts. It is well-established that the trimeric-trivalent TNFSF-receptor binding domain (TNFSF-RBD) exposed by the conducting cell and the resulting multi-trimer-based receptor clustering on the receiving cell are essential for agonistic signaling. Therefore, we have developed HERA-CD27L, a novel hexavalent TNF receptor agonist (HERA) targeting CD27 and mimicking the natural signaling concept. HERA-CD27L is composed of a trivalent but single-chain CD27L-receptor-binding-domain (scCD27L-RBD) fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. The hexavalent agonist significantly boosted antigen-specific T cell responses while having no effect on non-specific T cells and was superior over stabilized recombinant trivalent CD27L. In addition, HERA-CD27L demonstrated potent single-agent anti-tumor efficacy in two different syngeneic tumor models, MC38-CEA and CT26wt. Furthermore, the combination of HERA-CD27L and an anti-PD-1 antibody showed additive anti-tumor effects highlighting the importance of both T cell activation and checkpoint inhibition in anti-tumor immunity. In this manuscript, we describe the development of HERA-CD27L, a true CD27 agonist with a clearly defined forward-signaling mechanism of action.

6.
J Immunother ; 41(9): 385-398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30273198

RESUMEN

CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígenos CD40/antagonistas & inhibidores , Ligando de CD40/farmacología , Inmunoglobulina G/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , FN-kappa B/inmunología
7.
Neoplasia ; 17(6): 481-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26152356

RESUMEN

Second mitochondria-derived activator of caspase (Smac) mimetics are considered as promising anticancer therapeutics that are currently under investigation in early clinical trials. They induce apoptosis by antagonizing inhibitor of apoptosis proteins, which are frequently overexpressed in cancer. We previously reported that Smac mimetics, such as BV6, additionally exert non-apoptotic functions in glioblastoma (GBM) cells by stimulating migration and invasion in a nuclear factor kappa B (NF-κB)-dependent manner. Because NF-κB target genes mediating these effects are largely unknown, we performed whole-genome expression analyses. Here, we identify chemokine (C-C motif) ligand 2 (CCL2) as the top-listed NF-κB-regulated gene being upregulated upon BV6 treatment in GBM cells. BV6-induced upregulation and secretion of CCL2 are required for migration and invasion of GBM cells because knockdown of CCL2 in GBM cells abolishes these effects. Co-culture experiments of GBM cells with non-malignant astroglial cells reveal that BV6-stimulated secretion of CCL2 by GBM cells into the supernatant triggers migration of astroglial cells toward GBM cells because CCL2 knockdown in BV6-treated GBM cells impedes BV6-stimulated migration of astroglial cells. In conclusion, we identify CCL2 as a BV6-induced NF-κB target gene that triggers migration and invasion of GBM cells and exerts paracrine effects on the GBM's microenvironment by stimulating migration of astroglial cells. These findings provide novel insights into the biological functions of Smac mimetics with important implications for the development of Smac mimetics as cancer therapeutics.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Glioblastoma/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Oligopéptidos/farmacología , Microambiente Tumoral/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomimética , Western Blotting , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/genética , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Comunicación Paracrina , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
8.
Br J Pharmacol ; 165(4): 978-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21838754

RESUMEN

BACKGROUND AND PURPOSE: Splice variants of P2X7 receptor transcripts contribute to the diversity of receptor-mediated responses. Here, we investigated expression and function of C-terminal truncated (ΔC) variants of the mP2X7 receptor, which are predicted to escape inactivation in one strain of P2X7(-/-) mice (Pfizer KO). EXPERIMENTAL APPROACH: Expression in wild-type (WT) and Pfizer KO tissue was investigated by reverse transcription (RT)-PCR and Western blot analysis. ΔC variants were also cloned and expressed in HEK293 cells to investigate their assembly, trafficking and function. KEY RESULTS: RT-PCR indicates expression of a ΔC splice variant in brain, salivary gland (SG) and spleen from WT and Pfizer KO mice. An additional ΔC hybrid transcript, containing sequences of P2X7 upstream of exon 12, part of exon 13 followed in-frame by the sequence of the vector used to disrupt the P2X7 gene, was also identified in the KO mice. By blue native (BN) PAGE analysis and the use of cross linking reagents followed by SDS-PAGE, P2X7 trimers, dimers and monomers were detected in the spleen and SG of Pfizer KO mice. The molecular mass was reduced compared with P2X7 in WT mice tissue, consistent with a ΔC variant. When expressed in HEK293 cells the ΔC variants were inefficiently trafficked to the cell surface and agonist-evoked whole cell currents were small. Co-expressed with P2X7A, the ΔC splice variant acted in a dominant negative fashion to inhibit function. CONCLUSIONS AND IMPLICATIONS: Pfizer KO mice are not null for P2X7 receptor expression but express ΔC variants with reduced function.


Asunto(s)
Ratones Noqueados/fisiología , Receptores Purinérgicos P2X7/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/genética , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , ARN Mensajero/genética , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándulas Salivales/metabolismo , Alineación de Secuencia , Bazo/metabolismo
9.
Mol Cancer Ther ; 10(10): 1867-75, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21859841

RESUMEN

Evasion of apoptosis contributes to radioresistance of glioblastoma, calling for novel strategies to overcome apoptosis resistance. In this study, we investigated the potential of the small molecule Smac mimetic BV6 to modulate radiosensitivity of glioblastoma cells. Here, we identify a novel proapoptotic function of NF-κB in γ-irradiation-induced apoptosis of glioblastoma cells by showing, for the first time, that NF-κB is critically required for Smac mimetic-mediated radiosensitization. BV6 significantly increases γ-irradiation-triggered apoptosis in several glioblastoma cell lines in a dose- and time-dependent manner. Calculation of combination index (CI) reveals that the interaction of BV6 and γ-irradiation is highly synergistic (CI < 0.3). Molecular studies show that BV6 stimulates NF-κB activation, which is critical for radiosensitization, because genetic inhibition of NF-κB by overexpression of the dominant-negative superrepressor IκBα-SR significantly decreases BV6- and γ-irradiation-induced apoptosis. Also, the BV6-mediated enhancement of γ-irradiation-triggered caspase activation, drop of mitochondrial membrane potential, and cytochrome c release is abolished in cells overexpressing IκBα-SR. Similarly, NF-κB inhibition by ectopic expression of a kinase dead mutant of IKKß prevents the BV6-mediated sensitization for γ-irradiation. The clinical relevance is underscored by experiments with primary tumor samples showing that BV6 sensitizes primary cultured glioma cells as well as glioblastoma-initiating cancer stem cells derived from surgical specimens for γ-irradiation. In conclusion, we identify NF-κB as a critical mediator of Smac mimetic-conferred radiosensitization of glioblastoma cells. These results have important implications for the development of Smac mimetic-based combination protocols for radiosensitization of glioblastoma.


Asunto(s)
Materiales Biomiméticos/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , FN-kappa B/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Proteínas Reguladoras de la Apoptosis , Materiales Biomiméticos/química , Línea Celular Tumoral , Rayos gamma , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA