Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Appl Environ Microbiol ; 90(8): e0079524, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39082847

RESUMEN

Cable bacteria are filamentous bacteria that couple the oxidation of sulfide in sediments to the reduction of oxygen via long-distance electron transport over centimeter distances through periplasmic wires. However, the capability of cable bacteria to perform extracellular electron transfer to acceptors, such as electrodes, has remained elusive. In this study, we demonstrate that living cable bacteria actively move toward electrodes in different bioelectrochemical systems. Carbon felt and carbon fiber electrodes poised at +200 mV attracted live cable bacteria from the sediment. When the applied potential was switched off, cable bacteria retracted from the electrode. qPCR and scanning electron microscopy corroborated this finding and revealed cable bacteria in higher abundance present on the electrode surface compared with unpoised controls. These experiments raise new possibilities to study metabolism of cable bacteria and cultivate them in bioelectrochemical devices for bioelectronic applications, such as biosensing and bioremediation. IMPORTANCE: Extracellular electron transfer is a metabolic function associated with electroactive bacteria wherein electrons are exchanged with external electron acceptors or donors. This feature has enabled the development of several applications, such as biosensing, carbon capture, and energy recovery. Cable bacteria are a unique class of long, filamentous microbes that perform long-distance electron transport in freshwater and marine sediments. In this study, we demonstrate the attraction of cable bacteria toward carbon electrodes and demonstrate their potential electroactivity. This finding enables electronic control and monitoring of the metabolism of cable bacteria and may, in turn, aid in the development of bioelectronic applications.


Asunto(s)
Bacterias , Fuentes de Energía Bioeléctrica , Electrodos , Electrodos/microbiología , Transporte de Electrón , Bacterias/metabolismo , Bacterias/genética , Fuentes de Energía Bioeléctrica/microbiología , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Oxidación-Reducción , Técnicas Electroquímicas
2.
Angew Chem Int Ed Engl ; 63(6): e202312647, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018379

RESUMEN

Cable bacteria are multicellular, filamentous bacteria that use internal conductive fibers to transfer electrons over centimeter distances from donors within anoxic sediment layers to oxygen at the surface. We extracted the fibers and used them as free-standing bio-based electrodes to investigate their electrocatalytic behavior. The fibers catalyzed the reversible interconversion of oxygen and water, and an electric current was running through the fibers even when the potential difference was generated solely by a gradient of oxygen concentration. Oxygen reduction as well as oxygen evolution were confirmed by optical measurements. Within living cable bacteria, oxygen reduction by direct electrocatalysis on the fibers and not by membrane-bound proteins readily explains exceptionally high cell-specific oxygen consumption rates observed in the oxic zone, while electrocatalytic water oxidation may provide oxygen to cells in the anoxic zone.


Asunto(s)
Sedimentos Geológicos , Sulfuros , Transporte de Electrón , Sedimentos Geológicos/microbiología , Sulfuros/metabolismo , Oxidación-Reducción , Bacterias/metabolismo , Oxígeno/metabolismo , Agua/metabolismo , Electrodos
3.
Environ Sci Technol ; 57(32): 11750-11766, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523308

RESUMEN

Airborne bacteria and endotoxin may affect asthma and allergies. However, there is limited understanding of the environmental determinants that influence them. This study investigated the airborne microbiomes in the homes of 1038 participants from five cities in Northern Europe: Aarhus, Bergen, Reykjavik, Tartu, and Uppsala. Airborne dust particles were sampled with electrostatic dust fall collectors (EDCs) from the participants' bedrooms. The dust washed from the EDCs' clothes was used to extract DNA and endotoxin. The DNA extracts were used for quantitative polymerase chain (qPCR) measurement and 16S rRNA gene sequencing, while endotoxin was measured using the kinetic chromogenic limulus amoebocyte lysate (LAL) assay. The results showed that households in Tartu and Aarhus had a higher bacterial load and diversity than those in Bergen and Reykjavik, possibly due to elevated concentrations of outdoor bacterial taxa associated with low precipitation and high wind speeds. Bergen-Tartu had the highest difference (ANOSIM R = 0.203) in ß diversity. Multivariate regression models showed that α diversity indices and bacterial and endotoxin loads were positively associated with the occupants' age, number of occupants, cleaning frequency, presence of dogs, and age of the house. Further studies are needed to understand how meteorological factors influence the indoor bacterial community in light of climate change.


Asunto(s)
Contaminación del Aire Interior , Microbiota , Animales , Perros , Endotoxinas/análisis , Contaminación del Aire Interior/análisis , ARN Ribosómico 16S , Polvo/análisis , Bacterias/genética
4.
Environ Microbiol ; 23(5): 2605-2616, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760391

RESUMEN

Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.


Asunto(s)
Deltaproteobacteria , Salinidad , Bacterias/genética , Deltaproteobacteria/genética , Filogenia , ARN Ribosómico 16S/genética
5.
New Phytol ; 232(5): 2138-2151, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33891715

RESUMEN

Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.


Asunto(s)
Ecosistema , Oxígeno , Bacterias/genética , Sedimentos Geológicos , Raíces de Plantas , ARN Ribosómico 16S/genética , Rizosfera
6.
Antonie Van Leeuwenhoek ; 114(11): 1877-1887, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34491484

RESUMEN

Microaerophilic veils of swimming microorganisms form at oxic-anoxic interfaces, mostly described in sediments where sulfide from below meets oxygen diffusing in from the water phase. However, microaerophilic veils form even when these gradients do not overlap, for example when cable bacteria activity leads to a suboxic zone. This suggests that veil microorganisms can use electron donors other than sulfide. Here we describe the extraction of microorganisms from a microaerophilic veil that formed in cable-bacteria-enriched freshwater sediment using a glass capillary, and the subsequent isolation of a motile, microaerophilic, organoheterotrophic bacterium, strain R2-JLT, unable to oxidize sulfide. Based on phenotypic, phylogenetic, and genomic comparison, we propose strain R2-JLT as a novel Phyllobacterium species, P. calauticae sp. nov.. The type strain is R2-JLT (= LMG 32286T = DSM 112555T). This novel isolate confirms that a wider variety of electron donors, including organic compounds, can fuel the activity of microorganisms in microaerophilic veils.


Asunto(s)
Agua Dulce , Sedimentos Geológicos , Bacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfuros
7.
Antonie Van Leeuwenhoek ; 114(3): 325-335, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33543432

RESUMEN

Some social arthropods engage in mutualistic symbiosis with antimicrobial compound-producing microorganisms that provide protection against pathogens. Social spiders live in communal nests and contain specific endosymbionts with unknown function. Bacteria are also found on the spiders' surface, including prevalent staphylococci, which may have protective potential. Here we present the genomic and phenotypic characterization of strain i1, isolated from the surface of the social spider Stegodyphus dumicola. Phylogenomic analysis identified i1 as novel strain of Staphylococcus sciuri within subgroup 2 of three newly defined genomic subgroups. Further phenotypic investigations showed that S. sciuri i1 is an extremophile that can grow at a broad range of temperatures (4 °C-45 °C), high salt concentrations (up to 27%), and has antimicrobial activity against closely related species. We identified a lactococcin 972-like bacteriocin gene cluster, likely responsible for the antimicrobial activity, and found it conserved in two of the three subgroups of S. sciuri. These features indicate that S. sciuri i1, though not a specific symbiont, is well-adapted to survive on the surface of social spiders and may gain a competitive advantage by inhibiting closely related species.


Asunto(s)
Arañas , Animales , Antibacterianos/farmacología , Staphylococcus/genética , Temperatura
8.
Environ Microbiol ; 22(5): 1688-1706, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31970880

RESUMEN

The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins.


Asunto(s)
Bacterias/clasificación , Sedimentos Geológicos/microbiología , Virus/clasificación , Bacterias/genética , Países Bálticos , Océanos y Mares , Esporas Bacterianas/aislamiento & purificación , Virus/genética
9.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182471

RESUMEN

Evaporative cooling towers to dissipate excess process heat are essential installations in a variety of industries. The constantly moist environment enables substantial microbial growth, causing both operative challenges (e.g., biocorrosion) as well as health risks due to the potential aerosolization of pathogens. Currently, bacterial levels are monitored using rather slow and infrequent sampling and cultivation approaches. In this study, we describe the use of metabolic activity, namely oxygen respiration, as an alternative measure of bacterial load within cooling tower waters. This method is based on optical oxygen sensors that enable an accurate measurement of oxygen consumption within a closed volume. We show that oxygen consumption correlates with currently used cultivation-based methods (R2 = 0.9648). The limit of detection (LOD) for respiration-based bacterial quantification was found to be equal to 1.16 × 104 colony forming units (CFU)/mL. Contrary to the cultivation method, this approach enables faster assessment of the bacterial load with a measurement time of just 30 min compared to 48 h needed for cultivation-based measurements. Furthermore, this approach has the potential to be integrated and automated. Therefore, this method could contribute to more robust and reliable monitoring of bacterial contamination within cooling towers and subsequently increase operational stability and reduce health risks.


Asunto(s)
Bacterias/metabolismo , Carga Bacteriana , Oxígeno/análisis , Microbiología del Agua , Industrias
10.
Front Microbiol ; 15: 1407868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234547

RESUMEN

Thermodynamics has predicted many different kinds of microbial metabolism by determining which pairs of electron acceptors and donors will react to produce an exergonic reaction (a negative net change in Gibbs free energy). In energy-limited environments, such as the deep subsurface, such an approach can reveal the potential for unexpected or counter-intuitive energy sources for microbial metabolism. Up until recently, these thermodynamic calculations have been carried out with the assumption that chemical species appearing on the reactant and product side of a reaction formula have a constant concentration, and thus do not count towards net concentration changes and the overall direction of the reaction. This assumption is reasonable considering microorganisms are too small (~1 µm) for any significant differences in concentration to overcome diffusion. However, recent discoveries have demonstrated that the reductive and oxidative halves of reactions can be separated by much larger distances, from millimetres to centimetres via conductive filamentous bacteria, mineral conductivity, and biofilm conductivity. This means that the concentrations of reactants and products can indeed be different, and that concentration differences can contribute to the net negative change in Gibbs free energy. It even means that the same redox reaction, simultaneously running in forward and reverse, can drive energy conservation, in an ElectroMicrobiological Concentration Cell (EMCC). This paper presents a model to investigate this phenomenon and predict under which circumstances such concentration-driven metabolism might take place. The specific cases of oxygen concentration cells, sulfide concentration cells, and hydrogen concentration cells are examined in more detail.

11.
Syst Appl Microbiol ; 47(1): 126487, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295603

RESUMEN

Cable bacteria are electrically conductive, filamentous Desulfobulbaceae, which are morphologically, functionally, and phylogenetically distinct from the other members of this family. Cable bacteria have not been obtained in pure culture and were therefore previously described as candidate genera, Candidatus Electrothrix and Ca. Electronema; a representative of the latter is available as single-strain sediment enrichment. Here we present an improved workflow to obtain the first single-strain enrichments of Ca. Electrothrix and report their metagenome-assembled genomes (MAGs) and morphology. Based on these results and on previously published high-quality MAGs and morphological data of cable bacteria from both candidate genera, we propose to adopt the genus names Electrothrix and Electronema following the rules of the Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), with Electrothrix communis RBTS and Electronema aureum GSTS, respectively, as the nomenclatural types of the genera. Furthermore, based on average nucleotide identity (ANI) values < 95 % with any described species, we propose two of our three single-strain enrichment cultures as novel species of the genus Electrothrix, with the names E. aestuarii sp. nov. and E. rattekaaiensis sp. nov., according to the SeqCode.


Asunto(s)
Bacterias , Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Bacterias/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
12.
mBio ; 15(8): e0099224, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38980039

RESUMEN

The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct phylum-level bacterial lineage, which we propose as a new phylum, Candidatus Effluviviacota, in reference to its preferential occurrence at diverse seep areas. Based on tightly clustered high-quality MAGs, we propose two new genus-level candidatus taxa, Candidatus Effluvivivax and Candidatus Effluvibates. Genomic content analyses indicate that Candidatus Effluviviacota are chemoheterotrophs that harbor the Embden-Meyerhof-Parnas glycolysis pathway. They gain energy by fermenting organic substrates. Additionally, they display potential capabilities for the degradation of cellulose, hemicellulose, starch, xylan, and various peptides. Extracellular anaerobic respiration appears to rely on metals as electron acceptors, with electron transfer primarily mediated by multiheme cytochromes and by a flavin-based extracellular electron transfer (EET) mechanism that involves NADH-quinone oxidoreductase-demethylmenaquinone-synthesizing enzymes, uncharacterized membrane proteins, and flavin-binding proteins, also known as the NUO-DMK-EET-FMN complex. The heterogeneity within the Ca. Effluviviacota phylum suggests varying roles in energy metabolism among different genera. While NUO-DMK-EET-FMN electron transfer has been reported predominantly in Gram-positive bacteria, it is now identified in Ca. Effluviviacota as well. We detected the presence of genes associated with bacterial microcompartments in Ca. Effluviviacota, which can promote specific metabolic processes and protect the cytosol from toxic intermediates. IMPORTANCE: The newly discovered bacterial phylum Candidatus Effluviviacota is widespread across diverse seepage ecosystems, marine environments, and freshwater environments, with a notable preference for cold seeps. While maintaining an average abundance of approximately 1% in the global gene catalog of cold seep habitats, it has not hitherto been characterized. The metabolic versatility of Ca. Effluviviacota in anaerobic carbon, hydrogen, and metal cycling aligns with its prevalence in anoxic niches, with a preference for cold seep environments. Variations in metabolic potential between Ca. Effluvivivax and Ca. Effluvibates may contribute to shaping their respective habitat distributions.


Asunto(s)
Bacterias , Genoma Bacteriano , Sedimentos Geológicos , Metagenoma , Microbiota , Filogenia , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Microbiota/genética , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Metagenómica
13.
Environ Sci Technol ; 47(4): 1879-86, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23316874

RESUMEN

Results are presented from a chemostat study where the reductive dehalogenation of PCE was evaluated in the absence and presence of sulfate. Two chemostats inoculated with the Point Mugu culture, which contains strains of Dehalococcoides mccartyi, were operated at a 50 day HRT and fed PCE (1.12 mM) and lactate (4.3 mM). The control chemostat (PM-5L, no sulfate), achieved pseudo-steady-state transformation of PCE to ethene (98%) and VC (2%) at 2.4 nM of H(2). Batch kinetic tests with chemostat harvested cells showed the maximum rate (k(max)X) value for each dehalogenation step remained fairly constant, while hupL clone library analyses showed maintenance of a diverse D. mccartyi community. Sulfate (1 mM) was introduced to the second chemostat, PM-2L. Effective sulfate reduction was achieved 110 days later, resulting in 600 µM of total sulfide. PCE dechlorination efficiency decreased following complete sulfate reduction, yielding ethene (25%), VC (67%), and cis-DCE (8%). VC dechlorination was most affected, with k(max)X values decreasing by a factor of 50. The decrease was associated with the enrichment of the Cornell group of D. mccartyi and decline of the Pinellas group. Long-term exposure to sulfides and/or competition for H(2) may have been responsible for the community shift.


Asunto(s)
Bacterias/crecimiento & desarrollo , Sulfatos/metabolismo , Tetracloroetileno/metabolismo , Biodegradación Ambiental , Consorcios Microbianos , Modelos Químicos
14.
Microbiol Spectr ; : e0053823, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732806

RESUMEN

Bacterial cells can vary greatly in size, from a few hundred nanometers to hundreds of micrometers in diameter. Filamentous cable bacteria also display substantial size differences, with filament diameters ranging from 0.4 to 8 µm. We analyzed the genomes of cable bacterium filaments from 11 coastal environments of which the resulting 23 new genomes represent 10 novel species-level clades of Candidatus Electrothrix and two clades that putatively represent novel genus-level diversity. Fluorescence in situ hybridization with a species-level probe showed that large-sized cable bacteria belong to a novel species with the proposed name Ca. Electrothrix gigas. Comparative genome analysis suggests genes that play a role in the construction or functioning of large cable bacteria cells: the genomes of Ca. Electrothrix gigas encode a novel actin-like protein as well as a species-specific gene cluster encoding four putative pilin proteins and a putative type II secretion platform protein, which are not present in other cable bacteria. The novel actin-like protein was also found in a number of other giant bacteria, suggesting there could be a genetic basis for large cell size. This actin-like protein (denoted big bacteria protein, Bbp) may have a function analogous to other actin proteins in cell structure or intracellular transport. We contend that Bbp may help overcome the challenges of diffusion limitation and/or morphological complexity presented by the large cells of Ca. Electrothrix gigas and other giant bacteria. IMPORTANCE In this study, we substantially expand the known diversity of marine cable bacteria and describe cable bacteria with a large diameter as a novel species with the proposed name Candidatus Electrothrix gigas. In the genomes of this species, we identified a gene that encodes a novel actin-like protein [denoted big bacteria protein (Bbp)]. The bbp gene was also found in a number of other giant bacteria, predominantly affiliated to Desulfobacterota and Gammaproteobacteria, indicating that there may be a genetic basis for large cell size. Thus far, mostly structural adaptations of giant bacteria, vacuoles, and other inclusions or organelles have been observed, which are employed to overcome nutrient diffusion limitation in their environment. In analogy to other actin proteins, Bbp could fulfill a structural role in the cell or potentially facilitate intracellular transport.

15.
Sci Total Environ ; 857(Pt 2): 159455, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36252657

RESUMEN

Collecting and obtaining sufficient amount of airborne particles for multiple microbial component assessments can be challenging. A passive dust sampling device, the electrostatic dust fall collector (EDC) has been established for assessing airborne exposures including endotoxin and glucans. Recently, with advances in next-generation sequencing techniques, EDCs were used to collect microbial cells for DNA sequencing analysis to promote the study of airborne bacterial and fungal communities. However, low DNA yields have been problematic when employing passive sampling with EDC. To address this challenge, we attempted to increase the efficiency of extraction. We compared DNA extraction efficiency of bacterial components from EDCs captured on filters through filtration using five extraction techniques. By measuring the abundance, diversity and structure of bacterial communities using qPCR and amplicon sequencing targeting 16S rRNA genes, we found that two techniques outperformed the rest. Furthermore, we developed protocols to simultaneously extract both DNA and endotoxin from a single EDC cloth. Our technique promotes a high quality to price ratio and may be employed in large epidemiological studies addressing airborne bacterial exposure where a large number of samples is needed.


Asunto(s)
Contaminación del Aire Interior , Polvo , Polvo/análisis , Endotoxinas/análisis , ADN Bacteriano , Contaminación del Aire Interior/análisis , ARN Ribosómico 16S , Monitoreo del Ambiente/métodos , Bacterias
16.
Front Microbiol ; 14: 1008293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910179

RESUMEN

Cable bacteria are centimeters-long filamentous bacteria that oxidize sulfide in anoxic sediment layers and reduce oxygen at the oxic-anoxic interface, connecting these reactions via electron transport. The ubiquitous cable bacteria have a major impact on sediment geochemistry and microbial communities. This includes diverse bacteria swimming around cable bacteria as dense flocks in the anoxic zone, where the cable bacteria act as chemotactic attractant. We hypothesized that flocking only appears when cable bacteria are highly abundant and active. We set out to discern the timing and drivers of flocking over 81 days in an enrichment culture of the freshwater cable bacterium Candidatus Electronema aureum GS by measuring sediment microprofiles of pH, oxygen, and electric potential as a proxy of cable bacteria activity. Cable bacterial relative abundance was quantified by 16S rRNA amplicon sequencing, and microscopy observations to determine presence of flocking. Flocking was always observed at some cable bacteria, irrespective of overall cable bacteria rRNA abundance, activity, or sediment pH. Diverse cell morphologies of flockers were observed, suggesting that flocking is not restricted to a specific, single bacterial associate. This, coupled with their consistent presence supports a common mechanism of interaction, likely interspecies electron transfer via electron shuttles. Flocking appears exclusively linked to the electron conducting activity of the individual cable bacteria.

17.
ISME J ; 17(4): 561-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36697964

RESUMEN

Cable bacteria of the Desulfobulbaceae family are centimeter-long filamentous bacteria, which are capable of conducting long-distance electron transfer. Currently, all cable bacteria are classified into two candidate genera: Candidatus Electronema, typically found in freshwater environments, and Candidatus Electrothrix, typically found in saltwater environments. This taxonomic framework is based on both 16S rRNA gene sequences and metagenome-assembled genome (MAG) phylogenies. However, most of the currently available MAGs are highly fragmented, incomplete, and thus likely miss key genes essential for deciphering the physiology of cable bacteria. Also, a closed, circular genome of cable bacteria has not been published yet. To address this, we performed Nanopore long-read and Illumina short-read shotgun sequencing of selected environmental samples and a single-strain enrichment of Ca. Electronema aureum. We recovered multiple cable bacteria MAGs, including two circular and one single-contig. Phylogenomic analysis, also confirmed by 16S rRNA gene-based phylogeny, classified one circular MAG and the single-contig MAG as novel species of cable bacteria, which we propose to name Ca. Electronema halotolerans and Ca. Electrothrix laxa, respectively. The Ca. Electronema halotolerans, despite belonging to the previously recognized freshwater genus of cable bacteria, was retrieved from brackish-water sediment. Metabolic predictions showed several adaptations to a high salinity environment, similar to the "saltwater" Ca. Electrothrix species, indicating how Ca. Electronema halotolerans may be the evolutionary link between marine and freshwater cable bacteria lineages.


Asunto(s)
Bacterias , Sedimentos Geológicos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sedimentos Geológicos/microbiología , Transporte de Electrón , Bacterias/genética , Bacterias/metabolismo , Filogenia , Agua Dulce/microbiología
18.
Nat Commun ; 14(1): 1614, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959175

RESUMEN

Cable bacteria are centimeter-long filamentous bacteria that conduct electrons via internal wires, thus coupling sulfide oxidation in deeper, anoxic sediment with oxygen reduction in surface sediment. This activity induces geochemical changes in the sediment, and other bacterial groups appear to benefit from the electrical connection to oxygen. Here, we report that diverse bacteria swim in a tight flock around the anoxic part of oxygen-respiring cable bacteria and disperse immediately when the connection to oxygen is disrupted (by cutting the cable bacteria with a laser). Raman microscopy shows that flocking bacteria are more oxidized when closer to the cable bacteria, but physical contact seems to be rare and brief, which suggests potential transfer of electrons via unidentified soluble intermediates. Metagenomic analysis indicates that most of the flocking bacteria appear to be aerobes, including organotrophs, sulfide oxidizers, and possibly iron oxidizers, which might transfer electrons to cable bacteria for respiration. The association and close interaction with such diverse partners might explain how oxygen via cable bacteria can affect microbial communities and processes far into anoxic environments.


Asunto(s)
Deltaproteobacteria , Oxígeno , Oxidación-Reducción , Sedimentos Geológicos/microbiología , Bacterias/genética , Sulfuros
19.
Appl Environ Microbiol ; 78(24): 8555-63, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023751

RESUMEN

We determined a significant fraction of the genome sequence of a representative of Thiovulum, the uncultivated genus of colorless sulfur Epsilonproteobacteria, by analyzing the genome sequences of four individual cells collected from phototrophic mats from Elkhorn Slough, California. These cells were isolated utilizing a microfluidic laser-tweezing system, and their genomes were amplified by multiple-displacement amplification prior to sequencing. Thiovulum is a gradient bacterium found at oxic-anoxic marine interfaces and noted for its distinctive morphology and rapid swimming motility. The genomic sequences of the four individual cells were assembled into a composite genome consisting of 221 contigs covering 2.083 Mb including 2,162 genes. This single-cell genome represents a genomic view of the physiological capabilities of isolated Thiovulum cells. Thiovulum is the second-fastest bacterium ever observed, swimming at 615 µm/s, and this genome shows that this rapid swimming motility is a result of a standard flagellar machinery that has been extensively characterized in other bacteria. This suggests that standard flagella are capable of propelling bacterial cells at speeds much faster than typically thought. Analysis of the genome suggests that naturally occurring Thiovulum populations are more diverse than previously recognized and that studies performed in the past probably address a wide range of unrecognized genotypic and phenotypic diversities of Thiovulum. The genome presented in this article provides a basis for future isolation-independent studies of Thiovulum, where single-cell and metagenomic tools can be used to differentiate between different Thiovulum genotypes.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Epsilonproteobacteria/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , California , Epsilonproteobacteria/aislamiento & purificación , Sedimentos Geológicos/microbiología , Datos de Secuencia Molecular
20.
Front Microbiol ; 13: 1016418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246233

RESUMEN

The sediments under the Oxygen Minimum Zone of the Eastern Boundary Current System (EBCS) along Central-South Peru and North-Central Chile, known as Humboldt Sulfuretum (HS), is an organic-matter-rich benthic habitat, where bacteria process a variety of sulfur compounds under low dissolved-oxygen concentrations, and high sulfide and nitrate levels. This study addressed the structure, diversity and spatial distribution patterns of the HS bacterial community along Northern and South-Central Chile using 16S rRNA gene amplicon sequencing. The results show that during the field study period, the community was dominated by sulfur-associated bacteria. Indeed, the most abundant phylum was Desulfobacterota, while Sva0081 sedimentary group, of the family Desulfosarcinaceae (the most abundant family), which includes sulfate-reducer and H2 scavenger bacteria, was the most abundant genus. Furthermore, a spatial pattern was unveiled along the study area to which the family Desulfobulbaceae contributed the most to the spatial variance, which encompasses 42 uncharacterized amplicon sequence variants (ASVs), three assigned to Ca. Electrothrix and two to Desulfobulbus. Moreover, a very high microdiversity was found, since only 3.7% of the ASVs were shared among localities, reflecting a highly diverse and mature community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA