Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35088834

RESUMEN

Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.


Asunto(s)
Centriolos , Centrosoma , Ciclo Celular , División Celular , Cilios
2.
Development ; 147(13)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32541003

RESUMEN

The growth and evolutionary expansion of the cerebral cortex are defined by the spatial-temporal production of neurons, which itself depends on the decision of radial glial cells (RGCs) to self-amplify or to switch to neurogenic divisions. The mechanisms regulating these RGC fate decisions are still incompletely understood. Here, we describe a novel and evolutionarily conserved role of the canonical BMP transcription factors SMAD1/5 in controlling neurogenesis and growth during corticogenesis. Reducing the expression of both SMAD1 and SMAD5 in neural progenitors at early mouse cortical development caused microcephaly and an increased production of early-born cortical neurons at the expense of late-born ones, which correlated with the premature differentiation and depletion of the pool of cortical progenitors. Gain- and loss-of-function experiments performed during early cortical neurogenesis in the chick revealed that SMAD1/5 activity supports self-amplifying RGC divisions and restrains the neurogenic ones. Furthermore, we demonstrate that SMAD1/5 stimulate RGC self-amplification through the positive post-transcriptional regulation of the Hippo signalling effector YAP. We anticipate this SMAD1/5-YAP signalling module to be fundamental in controlling growth and evolution of the amniote cerebral cortex.


Asunto(s)
Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/embriología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteína Smad1/genética , Proteína Smad5/genética , Proteínas Señalizadoras YAP
3.
Development ; 145(21)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401784

RESUMEN

Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Centrosoma/metabolismo , Animales , Humanos , Microcefalia/patología , Mitosis , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis
4.
Nat Mater ; 18(4): 397-405, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778227

RESUMEN

The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.


Asunto(s)
Espacio Extracelular/metabolismo , Riñón/citología , Organoides/citología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos , Diferenciación Celular , Microambiente Celular , Femenino , Humanos , Cinética , Células Madre Pluripotentes/metabolismo , Embarazo , Tercer Trimestre del Embarazo , Transcriptoma
5.
Environ Sci Technol ; 54(11): 6594-6601, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32392043

RESUMEN

Characterization of the color of the plastic is often included in studies on plastic pollution. However, the comparability and relevance of this information is limited by methodology or observer subjectivity. Based on the analysis of thousands of floating plastic fragments from a global collection, here we propose a systematic semiautomatic method to analyze colors by using a reference palette of 120 Pantone colors. The most abundant colors were white and transparent/translucent (47%), yellow and brown (26%), and blue-like (9%). The white color increased in the smallest pieces (<5 mm) and far from coastal sources (>500 km). Both fragmentation and discolouration of ocean plastics may occur because of longer exposure time to sunlight in nature. In addition, yellow items peaked at around 1 cm and brown colors at around 1 mm, supporting the notion that yellowing precedes tanning in the aging process, which is paralleled by fragmentation. Apart from the effects of the weathering, our results suggest a second-order modulation of the color distributions of marine microplastics by the selective action of visual predators. The present work provides methodological tools and a wide empirical background to further the interpretation and applicability of the color information on ocean plastics.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Color , Monitoreo del Ambiente , Océanos y Mares , Contaminantes Químicos del Agua/análisis
6.
Development ; 143(12): 2194-205, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27122165

RESUMEN

Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/ß-catenin signalling. Using two in vivo models, we show that Wnt/ß-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/ß-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of ß-catenin, preventing ß-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits ß-catenin signalling, which then affects NC delamination.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Proteínas Wnt/metabolismo , Animales , Movimiento Celular , Núcleo Celular/metabolismo , Embrión de Pollo , Femenino , Células HEK293 , Humanos , Fracciones Subcelulares/metabolismo , Vía de Señalización Wnt , Xenopus laevis/embriología , Xenopus laevis/metabolismo , beta Catenina/metabolismo
7.
Genes Dev ; 24(11): 1186-200, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516201

RESUMEN

The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/metabolismo , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Transducción de Señal , Células Madre/fisiología , Animales , Biomarcadores/metabolismo , Embrión de Pollo , Regulación hacia Abajo , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Ratones , Neuronas/citología , Somitos/crecimiento & desarrollo , Factores de Tiempo , Pez Cebra
8.
Development ; 140(7): 1467-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462473

RESUMEN

The conventional explanation for how a morphogen patterns a tissue holds that cells interpret different concentrations of an extrinsic ligand by producing corresponding levels of intracellular signalling activity, which in turn regulate differential gene expression. However, this view has been challenged, raising the possibility that distinct mechanisms are used to interpret different morphogens. Here, we investigate graded BMP signalling in the vertebrate neural tube. We show that defined exposure times to Bmp4 generate distinct levels of signalling and induce specific dorsal identities. Moreover, we provide evidence that a dynamic gradient of BMP activity confers progressively more dorsal neural identities in vivo. These results highlight a strategy for morphogen interpretation in which the tight temporal control of signalling is important for the spatial pattern of cellular differentiation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Tubo Neural/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 4/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Tubo Neural/citología , Tubo Neural/efectos de los fármacos , Tubo Neural/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
J Cell Sci ; 126(Pt 23): 5335-43, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24105267

RESUMEN

The transforming growth factor beta (TGF-ß) pathway plays key roles in development and cancer. TGF-ß signaling converges on the Smad2 and Smad3 effectors, which can either cooperate or antagonize to regulate their transcriptional targets. Here we performed in vivo and in silico experiments to study how such cooperativity and antagonism might function during neurogenesis. In vivo electroporation experiments in the chick embryo neural tube show that Smad2 and Smad3 cooperate to promote neurogenesis, as well as the transcription of Smad3-specific targets. Knockdown of Smad2 enhances neurogenesis and the transcription of Smad3-specific targets. A mathematical model of the TGF-ß pathway fits the experimental results and predicts that the proportions of the three different trimeric complexes formed dictates the transcriptional responses of the R-Smad proteins. As such, Smad2 targets are activated solely by the Smad2-Smad2-Smad4 complex, whereas Smad3 targets are activated both by Smad2-Smad3-Smad4 and Smad3-Smad3-Smad4 trimers. We have modeled the Smad responses onto arbitrary genes and propose that this mechanism might be extended to additional activities of TGF-ß in development and disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Proteína Smad2/genética , Proteína smad3/genética , Proteína Smad4/genética , Animales , Embrión de Pollo , Simulación por Computador , Electroporación , Modelos Genéticos , Multimerización de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína Smad2/antagonistas & inhibidores , Proteína Smad2/metabolismo , Proteína smad3/antagonistas & inhibidores , Proteína smad3/metabolismo , Proteína Smad4/antagonistas & inhibidores , Proteína Smad4/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Development ; 139(2): 259-68, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22159578

RESUMEN

BMP activity is essential for many steps of neural development, including the initial role in neural induction and the control of progenitor identities along the dorsal-ventral axis of the neural tube. Taking advantage of chick in ovo electroporation, we show a novel role for BMP7 at the time of neurogenesis initiation in the spinal cord. Using in vivo loss-of-function experiments, we show that BMP7 activity is required for the generation of three discrete subpopulations of dorsal interneurons: dI1-dI3-dI5. Analysis of the BMP7 mouse mutant shows the conservation of this activity in mammals. Furthermore, this BMP7 activity appears to be mediated by the canonical Smad pathway, as we demonstrate that Smad1 and Smad5 activities are similarly required for the generation of dI1-dI3-dI5. Moreover, we show that this role is independent of the patterned expression of progenitor proteins in the dorsal spinal cord, but depends on the BMP/Smad regulation of specific proneural proteins, thus narrowing this BMP7 activity to the time of neurogenesis. Together, these data establish a novel role for BMP7 in primary neurogenesis, the process by which a neural progenitor exits the cell cycle and enters the terminal differentiation pathway.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Interneuronas/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Smad Reguladas por Receptores/metabolismo , Médula Espinal/embriología , Análisis de Varianza , Animales , Embrión de Pollo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Luciferasas , Ratones , Mutación/genética , Neurogénesis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad Reguladas por Receptores/genética
11.
J Neurosci ; 33(7): 2773-83, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407937

RESUMEN

Neuroblastoma is an embryonic tumor derived from cells of the neural crest. Taking advantage of a newly developed neural crest lineage tracer and based on the hypothesis that the molecular mechanisms that mediate neural crest delamination are also likely to be involved in the spread of neuroblastoma, we were able to identify genes that are active both in neural crest development and neuroblastoma tumor formation. A subsequent search of the neuroblastoma gene server for human orthologues of genes differentially expressed in the chick embryo neural crest screen retrieved the LIM domain only protein 4 (LMO4), which was expressed in both cell types analyzed. Functional experiments in these two model systems revealed that LMO4 activity is required for neuroblastoma cell invasion and neural crest delamination. Moreover, we identified LMO4 as an essential cofactor in Snail2-mediated cadherin repression and in the epithelial-to-mesenchymal transition of both neural crest and neuroblastoma cells. Together, our results suggest that the association of high levels of LMO4 with aggressive neuroblastomas is dependent on LMO4 regulation of cadherin expression and hence, tumor invasiveness.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Neoplasias Encefálicas/patología , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Cresta Neural/patología , Neuroblastoma/patología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Western Blotting , Cadherinas/biosíntesis , Cadherinas/fisiología , Línea Celular Tumoral , Embrión de Pollo , ADN/genética , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Vectores Genéticos , Humanos , Inmunohistoquímica , Hibridación in Situ , Lentivirus/genética , Luciferasas/fisiología , Análisis por Micromatrices , Invasividad Neoplásica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción de la Familia Snail , Timidina/metabolismo
12.
Cell Mol Life Sci ; 70(22): 4293-305, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23673983

RESUMEN

Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Médula Espinal/metabolismo , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Humanos , Neuronas/metabolismo , Transducción de Señal , Médula Espinal/crecimiento & desarrollo
14.
Development ; 137(17): 2915-25, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20667911

RESUMEN

During spinal cord development, the combination of secreted signaling proteins and transcription factors provides information for each neural type differentiation. Studies using embryonic stem cells show that trimethylation of lysine 27 of histone H3 (H3K27me3) contributes to repression of many genes key for neural development. However, it remains unclear how H3K27me3-mediated mechanisms control neurogenesis in developing spinal cord. Here, we demonstrate that H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. Our study indicates that expression of Noggin, a BMP extracellular inhibitor, is repressed by H3K27me3. Moreover, we show that Noggin expression is induced by BMP pathway signaling, generating a negative-feedback regulatory loop. In response to BMP pathway activation, JMJD3 histone demethylase interacts with the Smad1/Smad4 complex to demethylate and activate the Noggin promoter. Together, our data reveal how the BMP signaling pathway restricts its own activity in developing spinal cord by modulating H3K27me3 levels at the Noggin promoter.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Histonas/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proliferación Celular , Embrión de Pollo , Cartilla de ADN/genética , Epigénesis Genética , Histonas/química , Humanos , Metilación , Modelos Neurológicos , Neurogénesis , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Médula Espinal/citología
15.
Development ; 137(24): 4271-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21098568

RESUMEN

Sonic hedgehog signalling is essential for the embryonic development of many tissues including the central nervous system, where it controls the pattern of cellular differentiation. A genome-wide screen of neural progenitor cells to evaluate the Shh signalling-regulated transcriptome identified the forkhead transcription factor Foxj1. In both chick and mouse Foxj1 is expressed in the ventral midline of the neural tube in cells that make up the floor plate. Consistent with the role of Foxj1 in the formation of long motile cilia, floor plate cells produce cilia that are longer than the primary cilia found elsewhere in the neural tube, and forced expression of Foxj1 in neuroepithelial cells is sufficient to increase cilia length. In addition, the expression of Foxj1 in the neural tube and in an Shh-responsive cell line attenuates intracellular signalling by decreasing the activity of Gli proteins, the transcriptional mediators of Shh signalling. We show that this function of Foxj1 depends on cilia. Nevertheless, floor plate identity and ciliogenesis are unaffected in mouse embryos lacking Foxj1 and we provide evidence that additional transcription factors expressed in the floor plate share overlapping functions with Foxj1. Together, these findings identify a novel mechanism that modifies the cellular response to Shh signalling and reveal morphological and functional features of the amniote floor plate that distinguish these cells from the rest of the neuroepithelium.


Asunto(s)
Cilios/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Hedgehog/metabolismo , Tubo Neural/embriología , Tubo Neural/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Embrión de Pollo , Pollos , Cilios/ultraestructura , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Células 3T3 NIH , Tubo Neural/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
16.
Mar Pollut Bull ; 191: 114882, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37054479

RESUMEN

Systematic seafloor surveys are a highly desirable method of marine litter monitoring, but the high costs involved in seafloor sampling are not a trivial handicap. In the present work, we explore the opportunity provided by the artisanal trawling fisheries to obtain systematic data on marine litter in the Gulf of Cadiz between 2019 and 2021. We find that plastic was the most frequent material, with a prevalence of single-use and fishing-related items. Litter densities decreased with increasing distance to shore with a seasonal migration of the main litter hotspots. During pre-lockdown and post-lockdown stages derived from COVID-19, marine litter density decreased by 65 %, likely related to the decline in tourism and outdoor recreational activities. A continuous collaboration of 33 % of the local fleet would imply a removal of hundreds of thousands of items each year. The artisanal trawl fishing sector can play a unique role of monitoring marine litter on the seabed.


Asunto(s)
COVID-19 , Explotaciones Pesqueras , Humanos , Monitoreo del Ambiente , Control de Enfermedades Transmisibles , Contaminación Ambiental , Plásticos , Residuos/análisis
17.
Oncogene ; 42(28): 2218-2233, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37301928

RESUMEN

Neuroblastoma is a pediatric cancer that can present as low- or high-risk tumors (LR-NBs and HR-NBs), the latter group showing poor prognosis due to metastasis and strong resistance to current therapy. Whether LR-NBs and HR-NBs differ in the way they exploit the transcriptional program underlying their neural crest, sympatho-adrenal origin remains unclear. Here, we identified the transcriptional signature distinguishing LR-NBs from HR-NBs, which consists mainly of genes that belong to the core sympatho-adrenal developmental program and are associated with favorable patient prognosis and with diminished disease progression. Gain- and loss-of-function experiments revealed that the top candidate gene of this signature, Neurexophilin-1 (NXPH1), has a dual impact on NB cell behavior in vivo: whereas NXPH1 and its receptor α-NRXN1 promote NB tumor growth by stimulating cell proliferation, they conversely inhibit organotropic colonization and metastasis. As suggested by RNA-seq analyses, these effects might result from the ability of NXPH1/α-NRXN signalling to restrain the conversion of NB cells from an adrenergic state to a mesenchymal one. Our findings thus uncover a transcriptional module of the sympatho-adrenal program that opposes neuroblastoma malignancy by impeding metastasis, and pinpoint NXPH1/α-NRXN signaling as a promising target to treat HR-NBs.


Asunto(s)
Neuroblastoma , Neuropéptidos , Niño , Humanos , Cresta Neural/patología , Neuroblastoma/genética , Neuroblastoma/patología , Neuropéptidos/genética , Glicoproteínas
18.
Development ; 136(19): 3301-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19736325

RESUMEN

The canonical Wnt and sonic hedgehog (Shh) pathways have been independently linked to cell proliferation in a variety of tissues and systems. However, interaction of these signals in the control of cell cycle progression has not been studied. Here, we demonstrate that in the developing vertebrate nervous system these pathways genetically interact to control progression of the G1 phase of the cell cycle. By in vivo loss-of-function experiments, we demonstrate the absolute requirement of an upstream Shh activity for the regulation of Tcf3/4 expression. In the absence of Tcf3/4, the canonical Wnt pathway cannot activate target gene expression, including that of cyclin D1, and the cell cycle is necessarily arrested at G1. In addition to the control of G1 progression, Shh activity controls the G2 phase through the regulation of cyclin E, cyclin A and cyclin B expression, and this is achieved independently of Wnt. Thus, in neural progenitors, cell cycle progression is co-ordinately regulated by Wnt and Shh activities.


Asunto(s)
Proteínas Hedgehog/fisiología , Neuronas/citología , Neuronas/fisiología , Proteínas Wnt/fisiología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Embrión de Pollo , Ciclina D1/genética , Ciclina D1/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Modelos Biológicos , Transducción de Señal , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/fisiología , Proteína 1 Similar al Factor de Transcripción 7
19.
Nucleic Acids Res ; 38(5): e30, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20007146

RESUMEN

Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress.


Asunto(s)
Proteoma/genética , ARN de Transferencia de Serina/química , Respuesta de Proteína Desplegada/genética , Animales , Procesos de Crecimiento Celular , Línea Celular , Supervivencia Celular , Embrión de Pollo , Interpretación Estadística de Datos , Humanos , MicroARNs/clasificación , MicroARNs/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Biosíntesis de Proteínas , ARN de Transferencia de Serina/metabolismo
20.
Dev Dyn ; 239(1): 69-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19681160

RESUMEN

The spinal cord has been used as a model to dissect the mechanisms that govern the patterning of tissues during animal development, since the principles that rule the dorso-ventral patterning of the neural tube are applicable to other systems. Signals that determine the dorso-ventral axis of the spinal cord include Sonic hedgehog (Shh), acting as a bona fide morphogenetic signal to determine ventral progenitor identities, and members of the Bmp and the Wnt families, acting in the dorsal neural tube. Although Wnts have been initially recognized as important in proliferation of neural progenitor cells, their role in the dorso-ventral patterning has been controversial. In this review, we discuss recent reports that show an important contribution of the Wnt canonical pathway in dorso-ventral pattern formation. These data allow building a model by which the ventralizing activity of Shh is antagonized by Wnt activity through the expression of Gli3, a potent inhibitor of the Shh pathway. Therefore, antagonistic interactions between canonical Wnt, promoting dorsal identities, and Shh pathways, inducing ventral ones, would define the dorso-ventral patterning of the developing central nervous system.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/embriología , Vertebrados/embriología , Proteínas Wnt/antagonistas & inhibidores , Animales , Humanos , Modelos Biológicos , Tubo Neural/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli3 con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA