Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Exp Pathol ; 104(4): 209-222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36964979

RESUMEN

Arginine vasopressin (AVP) is a naturally occurring hormone synthesized in the hypothalamus. AVP demonstrates pro-fibrotic effects as it stimulates hepatic stellate cells to secrete transforming growth factor-ß (TGF-ß) and collagen. Previous work in liver cirrhotic (CCL4 -induced) hamsters demonstrated that AVP deficiency induced by neurointermediate pituitary lobectomy (NIL) can restore liver function. Therefore, we hypothesized that liver fibrosis would decrease in portocaval anastomosis (PCA) rats, which model chronic liver diseases, when they are treated with the V1a-V2 AVP receptor antagonist conivaptan (CV). In this study, changes in liver histology and gene expression were analysed in five experimental groups: control, PCA, NIL, PCA + NIL and PCA + CV, with NIL surgery or CV treatment administered 8 weeks after PCA surgery. Body weight gain was assessed on a weekly basis, and serum liver function, liver weight and liver glycogen content were assessed following euthanasia. Most PCA-induced phenotypes were reverted to normal levels following AVP-modelled deficiency, though hypoglycemia and ammonium levels remained elevated in the PCA + CV group. Liver histopathological findings showed a significant reversal in collagen content, less fibrosis in the triad and liver septa and increased regenerative nodules. Molecular analyses showed that the expression of fibrogenic genes (TGF-ß and collagen type I) decreased in the PCA + CV group. Our findings strongly suggest that chronic NIL or CV treatment can induce a favourable microenvironment to decrease liver fibrosis and support CV as an alternative treatment for liver fibrosis.


Asunto(s)
Diabetes Insípida Neurogénica , Receptores de Vasopresinas , Cricetinae , Ratas , Animales , Receptores de Vasopresinas/genética , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Arginina Vasopresina/farmacología , Cirrosis Hepática/tratamiento farmacológico , Anastomosis Quirúrgica , Arginina
2.
J Org Chem ; 87(3): 1689-1697, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-34775764

RESUMEN

Coordination-induced desolvation or ligand displacement by cosolvents and additives is a key feature responsible for the reactivity of Sm(II)-based reagent systems. High-affinity proton donor cosolvents such as water and glycols also demonstrate coordination-induced bond weakening of the O-H bond, facilitating reduction of a broad range of substrates. In the present work, the coordination of ammonia to SmI2 was examined using Born-Oppenheimer molecular dynamics simulations and mechanistic studies, and the SmI2-ammonia system is compared to the SmI2-water system. The coordination number and reactivity of the SmI2-ammonia solvent system were found to be similar to those of SmI2-water but exhibited an order of magnitude greater rate of arene reduction by SmI2-ammonia than by SmI2-water at the same concentrations of cosolvent. In addition, upon coordination of ammonia to SmI2, the Sm(II)-ammonia solvate demonstrates one of the largest degrees of N-H bond weakening reported in the literature compared to known low-valent transition metal ammonia complexes.

3.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232332

RESUMEN

The cell wall integrity pathway (CWI) is a MAPK-mediated signaling route essential for yeast cell response to cell wall damage, regulating distinct aspects of fungal physiology. We have recently proven that the incorporation of a genetic circuit that operates as a signal amplifier into this pathway allows for the identification of novel elements involved in CWI signaling. Here, we show that the strong growth inhibition triggered by pathway hyperactivation in cells carrying the "Integrity Pathway Activation Circuit" (IPAC) also allows the easy identification of new stimuli. By using the IPAC, we have found various chemical agents that activate the CWI pathway, including the aminoglycoside neomycin. Cells lacking key components of this pathway are sensitive to this antibiotic, due to the disruption of signaling upon neomycin stimulation. Neomycin reduces both phosphatidylinositol-4,5-bisphosphate (PIP2) availability at the plasma membrane and myriocin-induced TORC2-dependent Ypk1 phosphorylation, suggesting a strong interference with plasma membrane homeostasis, specifically with PIP2. The neomycin-induced transcriptional profile involves not only genes related to stress and cell wall biogenesis, but also to amino acid metabolism, reflecting the action of this antibiotic on the yeast ribosome.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Fosfatos de Inositol/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neomicina/farmacología , Fosfatidilinositoles/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555348

RESUMEN

Understanding which intracellular signaling pathways are activated by manganese stress is crucial to decipher how metal overload compromise cellular integrity. Here, we unveil a role for oxidative and cell wall stress signaling in the response to manganese stress in yeast. We find that the oxidative stress transcription factor Yap1 protects cells against manganese toxicity. Conversely, extracellular manganese addition causes a rapid decay in Yap1 protein levels. In addition, manganese stress activates the MAPKs Hog1 and Slt2 (Mpk1) and leads to an up-regulation of the Slt2 downstream transcription factor target Rlm1. Importantly, Yap1 and Slt2 are both required to protect cells from oxidative stress in mutants impaired in manganese detoxification. Under such circumstances, Slt2 activation is enhanced upon Yap1 depletion suggesting an interplay between different stress signaling nodes to optimize cellular stress responses and manganese tolerance.


Asunto(s)
Manganeso , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Manganeso/toxicidad , Manganeso/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Int Microbiol ; 24(4): 531-543, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33993419

RESUMEN

Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved signaling proteins involved in the regulation of most eukaryotic cellular processes. They are downstream components of essential signal transduction pathways activated by the external stimuli, in which the signal is conveyed through phosphorylation cascades. The excellent genetic and biochemical tractability of simple eukaryotes such as Saccharomyces cerevisiae has significantly contributed to gain fundamental information into the physiology of these key proteins. The budding yeast MAPK Slt2 was identified 30 years ago and was later revealed as a fundamental element of the cell wall integrity (CWI) pathway, one of the five MAPK routes of S. cerevisiae. As occurs with other MAPKs, whereas Slt2 displays the core typical structural traits of eukaryotic protein kinases, it also features conserved domains among MAPKs that allow an exquisite spatio-temporal regulation of their activity and binding to activating kinases, downregulatory phosphatases, or nuclear transcription factors. Additionally, Slt2 bears a regulatory extra C-terminal tail unique among S. cerevisiae MAPKs. Here, we review the structural and functional basis for the signaling role of Slt2 in the context of the molecular architecture of this important family of protein kinases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal
6.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498635

RESUMEN

The Mitogen-Activated Protein Kinase (MAPK) Slt2 is central to signaling through the yeast Cell Wall Integrity (CWI) pathway. MAPKs are regulated by phosphorylation at both the threonine and tyrosine of the conserved TXY motif within the activation loop (T190/Y192 in Slt2). Since phosphorylation at both sites results in the full activation of MAPKs, signaling through MAPK pathways is monitored with antibodies that detect dually phosphorylated forms. However, most of these antibodies also recognize monophosphorylated species, whose relative abundance and functionality are diverse. By using different phosphospecific antibodies and phosphate-affinity (Phos-tag) analysis on distinct Slt2 mutants, we determined that Y192- and T190-monophosphorylated species coexist with biphosphorylated Slt2, although most of the Slt2 pool remains unphosphorylated following stress. Among the monophosphorylated forms, only T190 exhibited biological activity. Upon stimulation, Slt2 is first phosphorylated at Y192, mainly by the MAPKK Mkk1, and this phosphorylation is important for the subsequent T190 phosphorylation. Similarly, dephosphorylation of Slt2 by the Dual Specificity Phosphatase (DSP) Msg5 is ordered, with dephosphorylation of T190 depending on previous Y192 dephosphorylation. Whereas Y192 phosphorylation enhances the Slt2 catalytic activity, T190 is essential for this activity. The conserved T195 residue is also critical for Slt2 functionality. Mutations that abolish the activity of Slt2 result in a high increase in inactive Y192-monophosphorylated Slt2. The coexistence of different Slt2 phosphoforms with diverse biological significance highlights the importance of the precise detection of the Slt2 phosphorylation status.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Anticuerpos/metabolismo , Activación Enzimática , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Mutación , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/inmunología
7.
Cancer Invest ; 38(1): 61-84, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31791151

RESUMEN

Cancer treatment by magnetic hyperthermia offers numerous advantages, but for practical applications many variables still need to be adjusted before developing a controlled and reproducible cancer treatment that is bio-compatible (non-damaging) to healthy cells. In this work, Fe3O4 and CoFe2O4 were synthesized and systematically studied for the development of efficient therapeutic agents for applications in hyperthermia. The biocompatibility of the materials was further evaluated using HepG2 cells as biological model. Colorimetric and microscopic techniques were used to evaluate the interaction of magnetic nano-materials (MNMs) and HepG2 cells. Finally, the behavior of MNMs was evaluated under the influence of an alternating magnetic field (AMF), observing a more efficient temperature increment for CoFe2O4, a desirable behavior for biomedical applications since lower doses and shorter expositions to alternating magnetic field might be required.


Asunto(s)
Hipertermia Inducida/métodos , Nanopartículas de Magnetita/administración & dosificación , Nanomedicina/métodos , Neoplasias/terapia , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Cobalto/administración & dosificación , Cobalto/química , Cobalto/toxicidad , Colorimetría , Terapia Combinada/efectos adversos , Terapia Combinada/métodos , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Óxido Ferrosoférrico/administración & dosificación , Óxido Ferrosoférrico/química , Óxido Ferrosoférrico/toxicidad , Células Hep G2 , Humanos , Hipertermia Inducida/efectos adversos , Hígado/efectos de la radiación , Magnetoterapia/efectos adversos , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Masculino , Ensayo de Materiales/métodos , Ratas , Factores de Tiempo , Pruebas de Toxicidad/métodos
8.
Phys Rev Lett ; 124(5): 056001, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083927

RESUMEN

Several types of experiments showed the existence of negative methane ions CH_{4}^{-} over a period of 50 years but the nature of this elusive species remains unknown. A benchmark study has shown that the experimentally observed species cannot be described by the attachment of an electron in the doublet ground state of CH_{4}^{-}. Here we find CH_{4}^{-} as being a metastable species in its lowest quartet spin state, a CH_{2}^{-}:H_{2} exciplex with three open shells lying ca. 10 eV above the methane singlet ground state but slightly below the dissociation fragments. The formation of charged high-spin exciplexes is a novel mechanism to explain small molecular anions with implications in a plethora of basic and applied research fields.

9.
Int Microbiol ; 23(1): 107-119, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31342212

RESUMEN

The Saccharomyces cerevisiae cell wall integrity (CWI) pathway took this name when its role in the cell response to cell wall aggressions was clearly established. The receptors involved in sensing the damage, the relevant components operating in signaling to the MAPK Slt2, the transcription factors activated by this MAPK, as well as some key regulatory mechanisms have been identified and characterized along almost 30 years. However, other stimuli that do not alter specifically the yeast cell wall, including protein unfolding, low or high pH, or plasma membrane, oxidative and genotoxic stresses, have been also found to trigger the activation of this pathway. In this review, we compile almost forty non-cell wall-specific compounds or conditions, such as tunicamycin, hypo-osmotic shock, diamide, hydroxyurea, arsenate, and rapamycin, which induce these stresses. Relevant aspects of the CWI-mediated signaling in the response to these non-conventional pathway activators are discussed. The data presented here highlight the central and key position of the CWI pathway in the safeguard of yeast cells to a wide variety of external aggressions.


Asunto(s)
Pared Celular/metabolismo , Transducción de Señal , Levaduras/fisiología , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Fisiológico
10.
Infect Immun ; 87(11)2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427448

RESUMEN

Entamoeba histolytica is an anaerobic parasitic protozoan and the causative agent of amoebiasis. E. histolytica expresses proteins that are structurally homologous to human proteins and uses them as virulence factors. We have previously shown that E. histolytica binds exogenous interferon gamma (IFN-γ) on its surface, and in this study, we explored whether exogenous IFN-γ could modulate parasite virulence. We identified an IFN-γ receptor-like protein on the surface of E. histolytica trophozoites by using anti-IFN-γ receptor 1 (IFN-γR1) antibody and performing immunofluorescence, Western blot, protein sequencing, and in silico analyses. Coupling of human IFN-γ to the IFN-γ receptor-like protein on live E. histolytica trophozoites significantly upregulated the expression of E. histolytica cysteine protease A1 (EhCP-A1), EhCP-A2, EhCP-A4, EhCP-A5, amebapore A (APA), cyclooxygenase 1 (Cox-1), Gal-lectin (Hgl), and peroxiredoxin (Prx) in a time-dependent fashion. IFN-γ signaling via the IFN-γ receptor-like protein enhanced E. histolytica's erythrophagocytosis of human red blood cells, which was abrogated by the STAT1 inhibitor fludarabine. Exogenous IFN-γ enhanced chemotaxis of E. histolytica, its killing of Caco-2 colonic and Hep G2 liver cells, and amebic liver abscess formation in hamsters. These results demonstrate that E. histolytica expresses a surface IFN-γ receptor-like protein that is functional and may play a role in disease pathogenesis and/or immune evasion.


Asunto(s)
Entamoeba histolytica/metabolismo , Proteínas Protozoarias/metabolismo , Receptores de Interferón/química , Amebiasis/inmunología , Amebiasis/parasitología , Animales , Células CACO-2 , Supervivencia Celular , Cricetinae , Células Hep G2 , Humanos , Interferón gamma/farmacología , Masculino , Fagocitosis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Receptor de Interferón gamma
11.
Inorg Chem ; 58(20): 13927-13932, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31584813

RESUMEN

Water addition to Sm(II) has been shown to increase reactivity for both SmI2 and SmBr2. Previous work in our groups has demonstrated that this increase in reactivity can be attributed to coordination induced bond weakening enabling substrate reduction through proton-coupled electron transfer. The present work examines the interaction of water with samarium dichloride (SmCl2) and illustrates the importance of the Sm-X interaction and bond distance upon water addition critical for the reactivity of the reagent system. Born-Oppenheimer molecular dynamics simulations identify substantial variations among the reductants created in solution upon water addition to SmI2, SmBr2, and SmCl2 with the latter showing the least halide dissociation. This results in a lower water coordination number for SmCl2, creating a more powerful reducing system. As previously shown with the other SmX2-water systems, coordination-induced bond-weakening of the O-H bond of water bound to Sm(II) results in significant bond weakening. In the case of SmCl2, the bond weakening is estimated to be in the range of 83 to 88.5 kcal/mol.

12.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959830

RESUMEN

Mitogen-activated protein kinases (MAPKs) are key mediators of signaling in fungi, participating in the response to diverse stresses and in developmental processes. Since the precise regulation of MAPKs is fundamental for cell physiology, fungi bear dual specificity phosphatases (DUSPs) that act as MAP kinase phosphatases (MKPs). Whereas fungal MKPs share characteristic domains of this phosphatase subfamily, they also have specific interaction motifs and particular activation mechanisms, which, for example, allow some yeast MKPs, such as Saccharomyces cerevisiae Sdp1, to couple oxidative stress with substrate recognition. Model yeasts show that MKPs play a key role in the modulation of MAPK signaling flow. Mutants affected in S. cerevisiae Msg5 or in Schizosaccharomyces pombe Pmp1 display MAPK hyperactivation and specific phenotypes. MKPs from virulent fungi, such as Candida albicans Cpp1, Fusarium graminearum Msg5, and Pyricularia oryzae Pmp1, are relevant for pathogenicity. Apart from transcriptional regulation, MKPs can be post-transcriptionally regulated by RNA-binding proteins such as Rnc1, which stabilizes the S. pombe PMP1 mRNA. P. oryzae Pmp1 activity and S. cerevisiae Msg5 stability are regulated by phosphorylation and ubiquitination, respectively. Therefore, fungi offer a platform to gain insight into the regulatory mechanisms that control MKPs.


Asunto(s)
Hongos/enzimología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Filogenia
13.
J Am Chem Soc ; 140(48): 16731-16739, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30412400

RESUMEN

The addition of water to samarium(II) has been demonstrated to have a significant impact on the reduction of organic substrates, with the majority of research dedicated to the most widely used reagent, samarium diiodide (SmI2). The work presented herein focuses on the reducing capabilities of samarium dibromide (SmBr2) and demonstrates how the modest change in halide ligand results in observable mechanistic differences between the SmBr2-water and the SmI2-water systems that have considerable implications in terms of reactivity between the two reagents. Quantum chemical results from Born-Oppenheimer molecular dynamics simulations show significant differences between SmI2-water and SmBr2-water, with the latter displaying less dissociation of the halide, which results in a lower coordination number for water. Experimental results are consistent with computational results and demonstrate that the coordination sphere of SmBr2 is saturated at lower concentrations of water. In addition, coordination-induced bond-weakening of the O-H bond is demonstrably different for water bound to SmBr2, leading to an estimated O-H bond-weakening of at least 83 kcal/mol, nearly 10 kcal/mol larger than the bond-weakening observed in SmI2-H2O. Experimental results also demonstrate that the use of alcohols in place of water with SmBr2 leads to substrate reduction, albeit several orders of magnitude slower than for SmBr2-water. The difference in rates resulting from the change in proton donor is attributed to a rate-limiting proton-coupled electron transfer in SmBr2-water and a sequential electron transfer then proton transfer in SmBr2-alcohol systems, where electron transfer is rate-limiting.

14.
J Chem Phys ; 149(14): 144301, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30316272

RESUMEN

We address the aqueous microsolvation of the CH3HgCl and CH3HgOH molecules using a stepwise hydration scheme including up to 33 water molecules and compare our results with the previously studied HgCl2, HgClOH, and Hg(OH)2 complexes. Optimized geometries and Gibbs free energies were obtained at the B3PW91/aug-RECP(Hg)-6-31G(d,p) level. At least 33 water molecules were required to build the first solvation shell around both methylmercury compounds. Optimized geometries were found having favorable interactions of water molecules with Hg, Cl, and the OH moiety. Born-Oppenheimer molecular dynamics simulations were performed on the largest CH3HgX(X = Cl, OH)-(H2O)33 clusters at the same level of theory. Born-Oppenheimer molecular dynamics simulations at T = 300 K (ca. 0.62 kcal/mol) revealed the presence of configurations with hydrogen-bonded networks that include the OH moiety in CH3HgOH and exclude both the Hg and Cl in CH3HgCl, favoring a clathrate-type structure around the methyl moiety. The comparison to the microsolvated HgClOH, Hg(OH)2, and HgCl2 molecules showed that, in all cases, the water molecules easily move away from Cl, thus supporting the idea that HgCl2 behaves as a non-polar solute. The theoretical (LIII edge) X-ray absorption near edge structure spectra are obtained and found in good agreement with experimental data, especially for the CH3HgCl species.

15.
J Biol Chem ; 291(11): 5461-5472, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26786099

RESUMEN

The yeast cell wall integrity MAPK Slt2 mediates the transcriptional response to cell wall alterations through phosphorylation of transcription factors Rlm1 and SBF. However, the variety of cellular functions regulated by Slt2 suggests the existence of a significant number of still unknown substrates for this kinase. To identify novel Slt2 targets, we generated and characterized an analog-sensitive mutant of Slt2 (Slt2-as) that can be specifically inhibited by bulky kinase inhibitor analogs. We demonstrated that Slt2-as is able to use adenosine 5'-[γ-thio]triphosphate analogs to thiophosphorylate its substrates in yeast cell extracts as well as when produced as recombinant proteins in Escherichia coli. Taking advantage of this chemical-genetic approach, we found that Slt2 phosphorylates the MAPK phosphatase Msg5 both in the N-terminal regulatory and C-terminal catalytic domains. Moreover, we identified the calcineurin regulator Rcn2, the 4E-BP (translation initiation factor eIF4E-binding protein) translation repressor protein Caf20, and the Golgi-associated adaptor Gga1 as novel targets for Slt2. The Slt2 phosphorylation sites on Rcn2 and Caf20 were determined. We also demonstrated that, in the absence of SLT2, the GGA1 paralog GGA2 is essential for cells to survive under cell wall stress and for proper protein sorting through the carboxypeptidase Y pathway. Therefore, Slt2-as provides a powerful tool that can expand our knowledge of the outputs of the cell wall integrity MAPK pathway.


Asunto(s)
Pared Celular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Pared Celular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/metabolismo
16.
Mol Syst Biol ; 11(4): 800, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25888283

RESUMEN

Genetic interaction screens have been applied with great success in several organisms to study gene function and the genetic architecture of the cell. However, most studies have been performed under optimal growth conditions even though many functional interactions are known to occur under specific cellular conditions. In this study, we have performed a large-scale genetic interaction analysis in Saccharomyces cerevisiae involving approximately 49 × 1,200 double mutants in the presence of five different stress conditions, including osmotic, oxidative and cell wall-altering stresses. This resulted in the generation of a differential E-MAP (or dE-MAP) comprising over 250,000 measurements of conditional interactions. We found an extensive number of conditional genetic interactions that recapitulate known stress-specific functional associations. Furthermore, we have also uncovered previously unrecognized roles involving the phosphatase regulator Bud14, the histone methylation complex COMPASS and membrane trafficking complexes in modulating the cell wall integrity pathway. Finally, the osmotic stress differential genetic interactions showed enrichment for genes coding for proteins with conditional changes in phosphorylation but not for genes with conditional changes in gene expression. This suggests that conditional genetic interactions are a powerful tool to dissect the functional importance of the different response mechanisms of the cell.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Pared Celular , Regulación Fúngica de la Expresión Génica , Redes y Vías Metabólicas/genética , Mutación , Presión Osmótica , Estrés Oxidativo/genética , Plásmidos , Transporte de Proteínas/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología
17.
Int J Mol Sci ; 17(6)2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27240339

RESUMEN

Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C-O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest.


Asunto(s)
Metano/química , Agua/química , Modelos Químicos , Simulación de Dinámica Molecular , Método de Montecarlo , Temperatura , Termodinámica
18.
Fungal Genet Biol ; 77: 1-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25736922

RESUMEN

The lack of signaling through MAPK pathways leads to a defective cellular response to the corresponding stimulus, but an improper hyperactivation of these routes results in deleterious effects as well. Protein phosphorylation is an activating modification for signal transmission through components of MAPK pathways and thus, protein phosphatases are key negative regulators of these cellular routes by limiting excessive signaling activity. However, in contrast to most of the protein kinases operating in MAPK pathways, protein phosphatases usually exhibit redundancy and promiscuity, which has limited the identification of their function. In order to identify new putative phosphatases operating in Saccharomyces cerevisiae MAPK signaling, we have taken advantage of growth inhibition promoted by overproduction of constitutively active components of the mating and cell wall integrity (CWI) pathways to perform a screen with a collection of 43 protein phosphatases or phosphatase-regulatory proteins. The phosphatases able to alleviate the induced growth inhibition when overproduced were further studied by testing their capacity to downregulate expression of mating and CWI responsive promoters and the consequences of their removal on MAPK signaling. Epistasis analysis placed the Ser/Thr protein phosphatase Ppq1 as a regulator of the mating MAPK module downstream the MAPKKK Ste11. The dual specificity phosphatase Yvh1 was found to be important for the maintenance of cell wall integrity and appropriate signaling through the CWI pathway. Moreover, we have found that Ptc2 and Ptc4 bind to the CWI MAPK Slt2. Together with known phosphatases of the mating and CWI pathway, as Msg5 or Ptp2, other putative negative regulators of both pathways that came up in the screening were Ptc2, Oca2 and Ptp1. We show that Ptp1 physically interacts with Slt2 and the mating MAPK Fus3. Elimination of Ptp1 results in increased signaling through these pathways, suggesting that this tyrosine phosphatase, like Ptp2 and Ptp3, plays a downregulatory role on both MAPKs.


Asunto(s)
Pared Celular/metabolismo , Fosfatasas de Especificidad Dual , Sistema de Señalización de MAP Quinasas , Fosfoproteínas Fosfatasas , Proteínas Tirosina Fosfatasas , Receptores del Factor de Conjugación/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Cell Proteomics ; 12(3): 557-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23221999

RESUMEN

The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1-cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Sitios de Unión/genética , Western Blotting , Membrana Celular/metabolismo , Pared Celular/metabolismo , Espectrometría de Masas , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Mutación , Fosfopéptidos/metabolismo , Fosfoproteínas/genética , Fosforilación , Proteína Quinasa C/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA