Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 562(7728): 557-562, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356185

RESUMEN

Polaritons-hybrid light-matter excitations-enable nanoscale control of light. Particularly large polariton field confinement and long lifetimes can be found in graphene and materials consisting of two-dimensional layers bound by weak van der Waals forces1,2 (vdW materials). These polaritons can be tuned by electric fields3,4 or by material thickness5, leading to applications including nanolasers6, tunable infrared and terahertz detectors7, and molecular sensors8. Polaritons with anisotropic propagation along the surface of vdW materials have been predicted, caused by in-plane anisotropic structural and electronic properties9. In such materials, elliptic and hyperbolic in-plane polariton dispersion can be expected (for example, plasmon polaritons in black phosphorus9), the latter leading to an enhanced density of optical states and ray-like directional propagation along the surface. However, observation of anisotropic polariton propagation in natural materials has so far remained elusive. Here we report anisotropic polariton propagation along the surface of α-MoO3, a natural vdW material. By infrared nano-imaging and nano-spectroscopy of semiconducting α-MoO3 flakes and disks, we visualize and verify phonon polaritons with elliptic and hyperbolic in-plane dispersion, and with wavelengths (up to 60 times smaller than the corresponding photon wavelengths) comparable to those of graphene plasmon polaritons and boron nitride phonon polaritons3-5. From signal oscillations in real-space images we measure polariton amplitude lifetimes of 8 picoseconds, which is more than ten times larger than that of graphene plasmon polaritons at room temperature10. They are also a factor of about four larger than the best values so far reported for phonon polaritons in isotopically engineered boron nitride11 and for graphene plasmon polaritons at low temperatures12. In-plane anisotropic and ultra-low-loss polaritons in vdW materials could enable directional and strong light-matter interactions, nanoscale directional energy transfer and integrated flat optics in applications ranging from bio-sensing to quantum nanophotonics.

2.
Nat Mater ; 19(9): 964-968, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32284598

RESUMEN

Phonon polaritons-light coupled to lattice vibrations-in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1-5. However, the lack of tunability of their narrow and material-specific spectral range-the Reststrahlen band-severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain.

3.
Nano Lett ; 20(7): 5323-5329, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32530634

RESUMEN

Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons-hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management.

4.
Nano Lett ; 19(10): 6931-6936, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31486648

RESUMEN

The appearance of single photon sources in atomically thin semiconductors holds great promises for the development of a flexible and ultracompact quantum technology in which elastic strain engineering can be used to tailor their emission properties. Here, we show a compact and hybrid two-dimensional semiconductor-piezoelectric device that allows for controlling the energy of single photons emitted by quantum emitters localized in wrinkled WSe2 monolayers. We demonstrate that strain fields exerted by the piezoelectric device can be used to tune the energy of localized excitons in WSe2 up to 18 meV in a reversible manner while leaving the single photon purity unaffected over a wide range. Interestingly, we find that the magnitude and, in particular, the sign of the energy shift as a function of stress is emitter dependent. With the help of finite element simulations we suggest a simple model that explains our experimental observations and, furthermore, discloses that the type of strain (tensile or compressive) experienced by the quantum emitters strongly depends on their localization across the wrinkles. Our findings are of strong relevance for the practical implementation of single photon devices based on two-dimensional materials as well as for understanding the effects of strain on their emission properties.

5.
Phys Rev Lett ; 121(3): 033902, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30085806

RESUMEN

We report on the observation of nearly maximally entangled photon pairs from semiconductor quantum dots, without resorting to postselection techniques. We use GaAs quantum dots integrated on a patterned piezoelectric actuator capable of suppressing the exciton fine structure splitting. By using a resonant two-photon excitation, we coherently drive the biexciton state and demonstrate experimentally that our device generates polarization-entangled photons with a fidelity of 0.978(5) and a concurrence of 0.97(1) taking into account the nonidealities stemming from the experimental setup. By combining fine-structure-dependent fidelity measurements and a theoretical model, we identify an exciton spin-scattering process as a possible residual decoherence mechanism. We suggest that this imperfection may be overcome using a modest Purcell enhancement so as to achieve fidelities >0.99, thus making quantum dots evenly matched with the best probabilistic entangled photon sources.

6.
Nanotechnology ; 28(21): 215204, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28471748

RESUMEN

We present a systematic theoretical study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial [Formula: see text] nanowire (NW) heterostructures. Our simulations reveal that for a sufficiently large ratio between the thickness of the [Formula: see text] disk and the diameter of the NW, the elastic relaxation leads to a significant reduction of the built-in electrostatic potential in comparison to a planar system of similar layer thickness and In content. In this case, the ground state transition energies approach constant values with increasing thickness of the disk and only depend on the In content, a behavior usually associated to that of a quantum well free of built-in electrostatic potentials. We show that the structures under consideration are by no means field-free, and the built-in potentials continue to play an important role even for ultrathin NWs. In particular, strain and the resulting polarization potentials induce complex confinement features of electrons and holes, which depend on the In content, shape, and dimensions of the heterostructure.

8.
Phys Rev Lett ; 114(15): 150502, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933298

RESUMEN

We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

9.
Opt Lett ; 39(16): 4691-4, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25121850

RESUMEN

The potential of Ge nanoparticles (NPs) embedded in Al2O3 with tunable effective optical bandgap values in the range of 1.0-3.3 eV to induce enhanced Er3+ light emission is investigated. We demonstrate nonresonant indirect excitation of the Er3+ ions mediated by the Ge NPs at room temperature. Efficient Er3+ light emission enhancement is obtained for Ge NPs with large effective optical bandgaps in the range of 1.85 to 2.8 eV. The coupled Ge NP-Er emission shows a negligible thermal quenching from 10 K to room temperature that is related to Er3+ de-excitation through thermally activated defect states.

10.
ACS Photonics ; 11(9): 3570-3577, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39310295

RESUMEN

Phonon polaritons (PhPs), light coupled to lattice vibrations, in the highly anisotropic polar layered material molybdenum trioxide (α-MoO3) are currently the focus of intense research efforts due to their extreme subwavelength field confinement, directional propagation, and unprecedented low losses. Nevertheless, prior research has primarily concentrated on exploiting the squeezing and steering capabilities of α-MoO3 PhPs, without inquiring much into the dominant microscopic mechanism that determines their long lifetimes, which is key for their implementation in nanophotonic applications. This study delves into the fundamental processes that govern PhP damping in α-MoO3 by combining ab initio calculations with scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy measurements across a broad temperature range (8-300 K). The remarkable agreement between our theoretical predictions and experimental observations allows us to identify third-order anharmonic phonon-phonon scattering as the main damping mechanism of α-MoO3 PhPs. These findings shed light on the fundamental limits of low-loss PhPs, which is a crucial factor for assessing their implementation into nanophotonic devices.

11.
Nat Commun ; 15(1): 2696, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538588

RESUMEN

Polariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α-MoO3, by combining α-MoO3 and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces. Ideally, it would be possible to canalize polaritons "naturally" in a single pristine layer. Here, we theoretically predict and experimentally demonstrate naturally canalized phonon polaritons (PhPs) in a single thin layer of the vdW crystal LiV2O5. In addition to canalization, PhPs in LiV2O5 exhibit strong field confinement ( λ p ~ λ 0 27 ), slow group velocity (0.0015c), and ultra-low losses (lifetimes of 2 ps). Our findings are promising for the implementation of low-loss optical nanodevices where strongly directional light propagation is needed, such as waveguides or optical routers.

12.
Front Endocrinol (Lausanne) ; 14: 1227059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560297

RESUMEN

Introduction: Admission hyponatremia, frequent in patients hospitalized for COVID-19, has been associated with increased mortality. However, although euvolemic hyponatremia secondary to the Syndrome of Inappropriate Antidiuresis (SIAD) is the single most common cause of hyponatremia in community-acquired pneumonia (CAP), a thorough and rigorous assessment of the volemia of hyponatremic COVID-19 subjects has yet to be described. We sought to identify factors contributing to mortality and hospital length-of-stay (LOS) in hospitalized COVID-19 patients admitted with hyponatremia, taking volemia into account. Method: Retrospective study of 247 patients admitted with COVID-19 to a tertiary hospital in Madrid, Spain from March 1st through March 30th, 2020, with a glycemia-corrected serum sodium level (SNa) < 135 mmol/L. Variables were collected at admission, at 2nd-3rd day of hospitalization, and ensuing days when hyponatremia persisted. Admission volemia (based on both physical and analytical parameters), therapy, and its adequacy as a function of volemia, were determined. Results: Age: 68 years [56-81]; 39.9% were female. Median admission SNa was 133 mmol/L [131- 134]. Hyponatremia was mild (SNa 131-134 mmol/L) in 188/247 (76%). Volemia was available in 208/247 patients; 57.2% were euvolemic and the rest (42.8%) hypovolemic. Hyponatremia was left untreated in 154/247 (62.3%) patients. Admission therapy was not concordant with volemia in 43/84 (51.2%). In fact, the majority of treated euvolemic patients received incorrect therapy with isotonic saline (37/41, 90.2%), whereas hypovolemics did not (p=0.001). The latter showed higher mortality rates than those receiving adequate or no therapy (36.7% vs. 19% respectively, p=0.023). The administration of isotonic saline to euvolemic hyponatremic subjects was independently associated with an elevation of in-hospital mortality (Odds Ratio: 3.877, 95%; Confidence Interval: 1.25-12.03). Conclusion: Hyponatremia in COVID-19 is predominantly euvolemic. Isotonic saline infusion therapy in euvolemic hyponatremic COVID-19 patients can lead to an increased mortality rate. Thus, an exhaustive and precise volemic assessment of the hyponatremic patient with CAP, particularly when due to COVID-19, is mandatory before instauration of therapy, even when hyponatremia is mild.


Asunto(s)
COVID-19 , Hiponatremia , Síndrome de Secreción Inadecuada de ADH , Neumonía , Humanos , Femenino , Anciano , Masculino , Hiponatremia/etiología , Hiponatremia/terapia , Síndrome de Secreción Inadecuada de ADH/complicaciones , Síndrome de Secreción Inadecuada de ADH/terapia , Estudios Retrospectivos , COVID-19/complicaciones , SARS-CoV-2 , Neumonía/complicaciones
13.
Sci Adv ; 8(29): eabp8486, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35857836

RESUMEN

Negative reflection occurs when light is reflected toward the same side of the normal to the boundary from which it is incident. This exotic optical phenomenon is not only yet to be visualized in real space but also remains unexplored, both at the nanoscale and in natural media. Here, we directly visualize nanoscale-confined polaritons negatively reflecting on subwavelength mirrors fabricated in a low-loss van der Waals crystal. Our near-field nanoimaging results unveil an unconventional and broad tunability of both the polaritonic wavelength and direction of propagation upon negative reflection. On the basis of these findings, we introduce a device in nano-optics: a hyperbolic nanoresonator, in which hyperbolic polaritons with different momenta reflect back to a common point source, enhancing the intensity. These results pave way to realize nanophotonics in low-loss natural media, providing an efficient route to control nanolight, a key for future on-chip optical nanotechnologies.

14.
Front Endocrinol (Lausanne) ; 13: 1025032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36440226

RESUMEN

Metabolic reprogramming is required to fight infections and thyroid hormones are key regulators of metabolism. We have analyzed in hospitalized COVID-19 patients: 40 euthyroid and 39 levothyroxine (LT4)-treated patients in the ward and 29 euthyroid and 9 LT4-treated patients in the intensive care unit (ICU), the baseline characteristics, laboratory data, thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), the FT3/FT4 ratio, 11 antiviral cytokines and 74 metabolomic parameters. No evidence for significant differences between euthyroid and LT4-treated patients were found in the biochemical, metabolomic and cytokines parameters analyzed. Only TSH (p=0.009) and ferritin (p=0.031) showed significant differences between euthyroid and LT4-treated patients in the ward, and TSH (p=0.044) and FT4 (p=0.012) in the ICU. Accordingly, severity and mortality were similar in euthyroid and LT4-treated patients. On the other hand, FT3 was negatively related to age (p=0.012), independently of sex and body mass index in hospitalized COVID-19 patients. Patients with low FT3 and older age showed a worse prognosis and higher levels of the COVID-19 severity markers IL-6 and IL-10 than patients with high FT3. IL-6 negatively correlated with FT3 (p=0.023) independently of age, body mass index and sex, whereas IL-10 positively associated with age (p=0.035) independently of FT3, body mass index and sex. A metabolomic cluster of 6 parameters defined low FT3 ward patients. Two parameters, esterified cholesterol (p=4.1x10-4) and small HDL particles (p=6.0x10-5) correlated with FT3 independently of age, body mass index and sex, whereas 3-hydroxybutyrate (p=0.010), acetone (p=0.076), creatinine (p=0.017) and high-density-lipoprotein (HDL) diameter (p=8.3x10-3) were associated to FT3 and also to age, with p-values of 0.030, 0.026, 0.017 and 8.3x10-3, respectively. In conclusion, no significant differences in FT3, cytokines, and metabolomic profile, or in severity and outcome of COVID-19, were found during hospitalization between euthyroid patients and hypothyroid patients treated with LT4. In addition, FT3 and age negatively correlate in COVID-19 patients and parameters that predict poor prognosis were associated with low FT3, and/or with age. A metabolomic cluster indicative of a high ketogenic profile defines non-critical hospitalized patients with low FT3 levels.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Tiroxina , Humanos , Triyodotironina , Interleucina-10 , Interleucina-6 , Estudios Transversales , Tirotropina , Hormonas Tiroideas , Metaboloma
15.
Adv Mater ; 34(10): e2104954, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34964174

RESUMEN

Optical nanoantennas are of great importance for photonic devices and spectroscopy due to their capability of squeezing light at the nanoscale and enhancing light-matter interactions. Among them, nanoantennas made of polar crystals supporting phonon polaritons (phononic nanoantennas) exhibit the highest quality factors. This is due to the low optical losses inherent in these materials, which, however, hinder the spectral tuning of the nanoantennas due to their dielectric nature. Here, active and passive tuning of ultranarrow resonances in phononic nanoantennas is realized over a wide spectral range (≈35 cm-1 , being the resonance linewidth ≈9 cm-1 ), monitored by near-field nanoscopy. To do that, the local environment of a single nanoantenna made of hexagonal boron nitride is modified by placing it on different polar substrates, such as quartz and 4H-silicon carbide, or covering it with layers of a high-refractive-index van der Waals crystal (WSe2 ). Importantly, active tuning of the nanoantenna polaritonic resonances is demonstrated by placing it on top of a gated graphene monolayer in which the Fermi energy is varied. This work presents the realization of tunable polaritonic nanoantennas with ultranarrow resonances, which can find applications in active nanooptics and (bio)sensing.

16.
Eur Heart J Acute Cardiovasc Care ; 11(4): 325-335, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35149868

RESUMEN

AIMS: Cardiac myosin-binding protein C (cMyC) demonstrated high diagnostic accuracy for the early detection of non-ST-elevation myocardial infarction (NSTEMI). Its dynamic release kinetics may enable a 0/1h-decision algorithm that is even more effective than the ESC hs-cTnT/I 0/1 h rule-in/rule-out algorithm. METHODS AND RESULTS: In a prospective international diagnostic study enrolling patients presenting with suspected NSTEMI to the emergency department, cMyC was measured at presentation and after 1 h in a blinded fashion. Modelled on the ESC hs-cTnT/I 0/1h-algorithms, we derived a 0/1h-cMyC-algorithm. Final diagnosis of NSTEMI was centrally adjudicated according to the 4th Universal Definition of Myocardial Infarction. Among 1495 patients, the prevalence of NSTEMI was 17%. The optimal derived 0/1h-algorithm ruled-out NSTEMI with cMyC 0 h concentration below 10 ng/L (irrespective of chest pain onset) or 0 h cMyC concentrations below 18 ng/L and 0/1 h increase <4 ng/L. Rule-in occurred with 0 h cMyC concentrations of at least 140 ng/L or 0/1 h increase ≥15 ng/L. In the validation cohort (n = 663), the 0/1h-cMyC-algorithm classified 347 patients (52.3%) as 'rule-out', 122 (18.4%) as 'rule-in', and 194 (29.3%) as 'observe'. Negative predictive value for NSTEMI was 99.6% [95% confidence interval (CI) 98.9-100%]; positive predictive value 71.1% (95% CI 63.1-79%). Direct comparison with the ESC hs-cTnT/I 0/1h-algorithms demonstrated comparable safety and even higher triage efficacy using the 0h-sample alone (48.1% vs. 21.2% for ESC hs-cTnT-0/1 h and 29.9% for ESC hs-cTnI-0/1 h; P < 0.001). CONCLUSION: The cMyC 0/1h-algorithm provided excellent safety and identified a greater proportion of patients suitable for direct rule-out or rule-in based on a single measurement than the ESC 0/1h-algorithm using hs-cTnT/I. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT00470587.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Algoritmos , Biomarcadores , Proteínas Portadoras , Diagnóstico Precoz , Humanos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio sin Elevación del ST/diagnóstico , Estudios Prospectivos , Troponina T
17.
Nanomaterials (Basel) ; 11(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430225

RESUMEN

Layered materials in which individual atomic layers are bonded by weak van der Waals forces (vdW materials) constitute one of the most prominent platforms for materials research. Particularly, polar vdW crystals, such as hexagonal boron nitride (h-BN), alpha-molybdenum trioxide (α-MoO3) or alpha-vanadium pentoxide (α-V2O5), have received significant attention in nano-optics, since they support phonon polaritons (PhPs)-light coupled to lattice vibrations- with strong electromagnetic confinement and low optical losses. Recently, correlative far- and near-field studies of α-MoO3 have been demonstrated as an effective strategy to accurately extract the permittivity of this material. Here, we use this accurately characterized and low-loss polaritonic material to sense its local dielectric environment, namely silica (SiO2), one of the most widespread substrates in nanotechnology. By studying the propagation of PhPs on α-MoO3 flakes with different thicknesses laying on SiO2 substrates via near-field microscopy (s-SNOM), we extract locally the infrared permittivity of SiO2. Our work reveals PhPs nanoimaging as a versatile method for the quantitative characterization of the local optical properties of dielectric substrates, crucial for understanding and predicting the response of nanomaterials and for the future scalability of integrated nanophotonic devices.

18.
Rev Esp Patol ; 54(3): 165-168, 2021.
Artículo en Español | MEDLINE | ID: mdl-34175027

RESUMEN

The difficulties involved in performing autopsies of patients who had died due to COVID-19 required the use of alternative methods in order to obtain tissue samples of affected organs. We describe the technique of core needle aspiration, without ultrasonographic guidance, which we used in 19 cadavers and which produced a high yield in lungs, heart (>94%) and liver (>89%), thus enabling the study of the morphological changes produced by SARS-CoV-2.


Asunto(s)
Biopsia con Aguja Gruesa/métodos , COVID-19/patología , Biopsia con Aguja Gruesa/instrumentación , Encéfalo/patología , COVID-19/prevención & control , Cadáver , Humanos , Riñón/patología , Hígado/patología , Pulmón/patología , Miocardio/patología , Bazo/patología
19.
Sci Adv ; 7(41): eabj0127, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623915

RESUMEN

Phonon polaritons (PhPs)­light coupled to lattice vibrations­with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.

20.
J Phys Chem C Nanomater Interfaces ; 124(28): 15434-15439, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32704340

RESUMEN

The development of broadband and ultracompact optoelectronic devices relies on the possibility of fabricating bright and tunable emitters at the nanoscale. Here, we show emission from EuO x (1 ≤ x < 1.4) thin films on silicon formed by nanocrystals with average sizes in the range of 5 nm. The photoluminescence emission of the nano-EuO x films is tunable as a function of the oxygen concentration changing from a green broadband Eu2+-related emission to a narrow red Eu3+-related emission. To reach these results has been instrumental through the use of a new methodology specially designed to achieve high-quality europium oxide films whose compositional properties are controlled by the growth base pressure and preserved thanks to a chemically stable and transparent cover layer of Al2O3. Our findings confirm the outstanding potential of nanostructured EuO x films as "one-compound" optical elements with tunable emission properties for their implementation in integrated silicon-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA