Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO Rep ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890452

RESUMEN

Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited. To address this question, we used neural stem cells to analyze the function of the H3K9me2 demethylase PHF2, which is crucial for progenitor proliferation. Through mass-spectroscopy and genome-wide assays, we show that PHF2 interacts with heterochromatin components and is enriched at pericentromeric heterochromatin (PcH) boundaries where it maintains transcriptional activity. This binding is essential for silencing the satellite repeats, preventing DNA damage and genome instability. PHF2's depletion increases the transcription of heterochromatic repeats, accompanied by a decrease in H3K9me3 levels and alterations in PcH organization. We further show that PHF2's PHD and catalytic domains are crucial for maintaining PcH stability, thereby safeguarding genome integrity. These results highlight the multifaceted nature of PHF2's functions in maintaining heterochromatin stability and regulating gene expression during neural development. Our study unravels the intricate relationship between heterochromatin stability and progenitor proliferation during mammalian neurogenesis.

2.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081130

RESUMEN

Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Histona Demetilasas/genética , Factores de Transcripción/genética , Animales , Astrocitos/citología , Sitios de Unión , Biomarcadores , Diferenciación Celular/genética , Proliferación Celular , Perfilación de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/metabolismo , Ratones , Modelos Biológicos , Neurogénesis , Neuronas/metabolismo , Unión Proteica , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 116(39): 19464-19473, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31488723

RESUMEN

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.


Asunto(s)
Daño del ADN , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Metilación de ADN , Células Madre Embrionarias , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Histona Demetilasas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/enzimología , Neurogénesis/fisiología , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887017

RESUMEN

The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus.


Asunto(s)
Histona Demetilasas , Histona Demetilasas con Dominio de Jumonji , Núcleo Celular/metabolismo , Desmetilación , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo
5.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438503

RESUMEN

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/genética , Neurogénesis/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Animales , Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Polaridad Celular/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/genética , Factores de Transcripción/genética
6.
Nucleic Acids Res ; 45(7): 3800-3811, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28100697

RESUMEN

A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.


Asunto(s)
Histona Demetilasas/metabolismo , Interferón gamma/farmacología , Factores de Transcripción/metabolismo , Activación Transcripcional , Línea Celular , Cromatina/metabolismo , Silenciador del Gen , Histona Desacetilasa 1/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
7.
Development ; 139(15): 2681-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22782721

RESUMEN

Neural development requires crosstalk between signaling pathways and chromatin. In this study, we demonstrate that neurogenesis is promoted by an interplay between the TGFß pathway and the H3K27me3 histone demethylase (HDM) JMJD3. Genome-wide analysis showed that JMJD3 is targeted to gene promoters by Smad3 in neural stem cells (NSCs) and is essential to activate TGFß-responsive genes. In vivo experiments in chick spinal cord revealed that the generation of neurons promoted by Smad3 is dependent on JMJD3 HDM activity. Overall, these findings indicate that JMJD3 function is required for the TGFß developmental program to proceed.


Asunto(s)
Biología Evolutiva/métodos , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neuronas/metabolismo , Proteína smad3/metabolismo , Animales , Embrión de Pollo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Médula Espinal/embriología , Factor de Crecimiento Transformador beta/metabolismo
8.
Cell Tissue Res ; 359(1): 87-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24950624

RESUMEN

Central nervous system (CNS) development is driven by coordinated actions of developmental signals and chromatin regulators that precisely regulate gene expression patterns. Histone methylation is a regulatory mechanism that controls transcriptional programs. In the last 10 years, several histone demethylases (HDM) have been identified as important players in neural development, and their implication in cell fate decisions is beginning to be recognized. Identification of the physiological roles of these enzymes and their molecular mechanisms of action will be necessary for completely understanding the process that ultimately generates different neural cells in the CNS. In this review, we provide an overview of the Jumonji family of HDMs involved in neurodevelopment, and we discuss their roles during neural fate establishment and neuronal differentiation.


Asunto(s)
Histona Demetilasas/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis , Animales , Humanos , Modelos Biológicos , Familia de Multigenes , Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/patología
9.
Carcinogenesis ; 35(10): 2194-202, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24853677

RESUMEN

Cell transformation is clearly linked to epigenetic changes. However, the role of the histone-modifying enzymes in this process is still poorly understood. In this study, we investigated the contribution of the histone acetyltransferase (HAT) enzymes to Ras-mediated transformation. Our results demonstrated that lysine acetyltransferase 5, also known as Tip60, facilitates histone acetylation of bulk chromatin in Ras-transformed cells. As a consequence, global H4 acetylation (H4K8ac and H4K12ac) increases in Ras-transformed cells, rendering a more decompacted chromatin than in parental cells. Furthermore, low levels of CREB-binding protein (CBP) lead to hypoacetylation of retinoblastoma 1 (Rb1) and cyclin-dependent kinase inhibitor 1B (Cdkn1b or p27Kip1) tumour suppressor gene promoters to facilitate Ras-mediated transformation. In agreement with these data, overexpression of Cbp counteracts Ras transforming capability in a HAT-dependent manner. Altogether our results indicate that CBP and Tip60 coordinate histone acetylation at both local and global levels to facilitate Ras-induced transformation.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Transformación Celular Neoplásica/genética , Genes ras , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Proteína de Unión a CREB/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Histona Acetiltransferasas/genética , Lisina Acetiltransferasa 5 , Ratones , Células 3T3 NIH/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Transactivadores/genética
10.
Neurobiol Dis ; 67: 49-56, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657916

RESUMEN

Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Pollos , Dosificación de Gen , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Datos de Secuencia Molecular , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
11.
Nucleic Acids Res ; 40(19): 9429-40, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22850744

RESUMEN

PHF8 is a histone demethylase associated with X-linked mental retardation. It has been described as a transcriptional co-activator involved in cell cycle progression, but its physiological role is still poorly understood. Here we show that PHF8 controls the expression of genes involved in cell adhesion and cytoskeleton organization such as RhoA, Rac1 and GSK3ß. A lack of PHF8 not only results in a cell cycle delay but also in a disorganized actin cytoskeleton and impaired cell adhesion. Our data demonstrate that PHF8 directly regulates the expression of these genes by demethylating H4K20me1 at promoters. Moreover, c-Myc transcription factor cooperates with PHF8 to regulate the analysed promoters. Further analysis in neurons shows that depletion of PHF8 results in down-regulation of cytoskeleton genes and leads to a deficient neurite outgrowth. Overall, our results suggest that the mental retardation phenotype associated with loss of function of PHF8 could be due to abnormal neuronal connections as a result of alterations in cytoskeleton function.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Regulación de la Expresión Génica , Histona Demetilasas/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Adhesión Celular/genética , Línea Celular , Células Cultivadas , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Células HeLa , Histona Demetilasas/antagonistas & inhibidores , Humanos , Ratones , Neuritas/ultraestructura , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/antagonistas & inhibidores , alfa Catenina/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
12.
Development ; 137(17): 2915-25, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20667911

RESUMEN

During spinal cord development, the combination of secreted signaling proteins and transcription factors provides information for each neural type differentiation. Studies using embryonic stem cells show that trimethylation of lysine 27 of histone H3 (H3K27me3) contributes to repression of many genes key for neural development. However, it remains unclear how H3K27me3-mediated mechanisms control neurogenesis in developing spinal cord. Here, we demonstrate that H3K27me3 controls dorsal interneuron generation by regulation of BMP activity. Our study indicates that expression of Noggin, a BMP extracellular inhibitor, is repressed by H3K27me3. Moreover, we show that Noggin expression is induced by BMP pathway signaling, generating a negative-feedback regulatory loop. In response to BMP pathway activation, JMJD3 histone demethylase interacts with the Smad1/Smad4 complex to demethylate and activate the Noggin promoter. Together, our data reveal how the BMP signaling pathway restricts its own activity in developing spinal cord by modulating H3K27me3 levels at the Noggin promoter.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Histonas/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proliferación Celular , Embrión de Pollo , Cartilla de ADN/genética , Epigénesis Genética , Histonas/química , Humanos , Metilación , Modelos Neurológicos , Neurogénesis , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Médula Espinal/citología
13.
Nat Commun ; 13(1): 3263, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672304

RESUMEN

Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFß-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFß pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFß pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFß-driven response during mammalian neurogenesis.


Asunto(s)
Células-Madre Neurales , Factor de Crecimiento Transformador beta , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Expresión Génica , Genoma , Mamíferos/genética , Células-Madre Neurales/metabolismo , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
14.
Nucleic Acids Res ; 35(6): 1958-68, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17341466

RESUMEN

Simian Virus 40 (SV40) large T antigen (T Ag) is a multifunctional viral oncoprotein that regulates viral and cellular transcriptional activity. However, the mechanisms by which such regulation occurs remain unclear. Here we show that T antigen represses CBP-mediated transcriptional activity. This repression is concomitant with histone H3 deacetylation and is TSA sensitive. Moreover, our results demonstrate that T antigen interacts with HDAC1 in vitro in an Rb-independent manner. In addition, the overexpression of HDAC1 cooperates with T antigen to antagonize CBP transactivation function and correlates with chromatin deacetylation of the TK promoter. Finally, decreasing HDAC1 levels with small interfering RNA (siRNA) partially abolishes T antigen-induced repression. These findings highlight the importance of the histone acetylation/deacetylation balance in the cellular transformation mediated by oncoviral proteins.


Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Proteína de Unión a CREB/antagonistas & inhibidores , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Acetilación , Animales , Cromatina/enzimología , Humanos , Proteínas Represoras/metabolismo , Transcripción Genética
15.
Elife ; 72018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095408

RESUMEN

Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins' activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Animales , Sitios de Unión , Embrión de Pollo , Unión Proteica
16.
Biochem J ; 398(2): 215-24, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16704373

RESUMEN

The CBP [CREB (cAMP-response-element-binding protein)-binding protein]/p300 acetyltransferases function as transcriptional co-activators and play critical roles in cell differentiation and proliferation. Accumulating evidence shows that alterations of the CBP/p300 protein levels are linked to human tumours. In the present study, we show that the levels of the CBP/p300 co-activators are decreased dramatically by continuous PDGF (platelet-derived growth factor) and Ras signalling pathway activation in NIH 3T3 fibroblasts. This effect occurs by reducing the expression levels of the CBP/p300 genes. In addition, CBP and p300 are degraded by the 26 S proteasome pathway leading to an overall decrease in the levels of the CBP/p300 proteins. Furthermore, we provide evidence that Mdm2 (murine double minute 2), in the presence of active H-Ras or N-Ras, induces CBP/p300 degradation in NIH 3T3 cells. These findings support a novel mechanism for modulating other signalling transduction pathways that require these common co-activators.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Activación Enzimática/efectos de los fármacos , Expresión Génica , Histona Acetiltransferasas/genética , Ratones , Células 3T3 NIH , Factor de Crecimiento Derivado de Plaquetas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factores de Transcripción/genética , Ubiquitina/metabolismo , Valina/genética , Valina/metabolismo , Factores de Transcripción p300-CBP , Proteínas ras/genética
17.
Nucleic Acids Res ; 31(12): 3114-22, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12799439

RESUMEN

Histone acetyltransferases (HATs) play a key role in transcription control, cell proliferation and differentiation by modulating chromatin structure; however, little is known about their own regulation. Here we show that expression of the viral oncoprotein SV40 T antigen increases histone acetylation and global cellular HAT activities. In addition, it enhances CREB-binding protein HAT activity and modulates its transcriptional activity. Finally, we show that inhibition of cellular histone deacetylases by trichostatin A increases the SV40 infectivity rate. These findings highlight the importance of histone acetylation in the regulation of the cell cycle by oncoviral proteins.


Asunto(s)
Acetiltransferasas/metabolismo , Antígenos Transformadores de Poliomavirus/farmacología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Antígenos Transformadores de Poliomavirus/metabolismo , Proteína de Unión a CREB , Línea Celular , Activación Enzimática , Histona Acetiltransferasas , Inhibidores de Histona Desacetilasas , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Virus 40 de los Simios/inmunología , Virus 40 de los Simios/patogenicidad , Activación Transcripcional
18.
Neurogenesis (Austin) ; 3(1): e1250034, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28090544

RESUMEN

During early stages of neural development, neuroepithelial cells translocate their nuclei along the apicobasal axis in a harmonized manner with the cell cycle. How cell cycle progression and neuroepithelium polarity are coordinated remains unclear. It has been proposed that developmental cues, epigenetic mechanisms and cell cycle regulators must be linked in order to orchestrate these processes. We have recently discovered that a master epigenetic factor, EZH2 is essential to coordinate these events. EZH2 directly represses the cell cycle regulator p21WAF1/CIP in the chicken spinal cord. By doing so, EZH2 controls neural progenitor cell renewal and fine-tunes Rho signaling pathway, which is essential to maintain neuroepithelial structure. Our findings point to a new role of EZH2 during development that could have potential implication in other areas as cancer.

19.
Open Biol ; 6(4): 150227, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27248655

RESUMEN

The function of EZH2 as a transcription repressor is well characterized. However, its role during vertebrate development is still poorly understood, particularly in neurogenesis. Here, we uncover the role of EZH2 in controlling the integrity of the neural tube and allowing proper progenitor proliferation. We demonstrate that knocking down the EZH2 in chick embryo neural tubes unexpectedly disrupts the neuroepithelium (NE) structure, correlating with alteration of the Rho pathway, and reduces neural progenitor proliferation. Moreover, we use transcriptional profiling and functional assays to show that EZH2-mediated repression of p21(WAF1/CIP1) contributes to both processes. Accordingly, overexpression of cytoplasmic p21(WAF1/CIP1) induces NE structural alterations and p21(WAF1/CIP1) suppression rescues proliferation defects and partially compensates for the structural alterations and the Rho activity. Overall, our findings describe a new role of EZH2 in controlling the NE integrity in the neural tube to allow proper progenitor proliferation.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Proteínas Represoras/metabolismo , Animales , Polaridad Celular , Proliferación Celular , Embrión de Pollo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo , Regiones Promotoras Genéticas/genética
20.
Mol Biol Cell ; 24(3): 351-60, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23243002

RESUMEN

JMJD3 H3K27me3 demethylase plays an important role in the transcriptional response to different signaling pathways; however, the mechanism by which it facilitates transcription has been unclear. Here we show that JMJD3 regulates transcription of transforming growth factor ß (TGFß)-responsive genes by promoting RNA polymerase II (RNAPII) progression along the gene bodies. Using chromatin immunoprecipitation followed by sequencing experiments, we show that, upon TGFß treatment, JMJD3 and elongating RNAPII colocalize extensively along the intragenic regions of TGFß target genes. According to these data, genome-wide analysis shows that JMJD3-dependent TGFß target genes are enriched in H3K27me3 before TGFß signaling pathway activation. Further molecular analyses demonstrate that JMJD3 demethylates H3K27me3 along the gene bodies, paving the way for the RNAPII progression. Overall these findings uncover the mechanism by which JMJD3 facilitates transcriptional activation.


Asunto(s)
Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/fisiología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inmunoprecipitación de Cromatina , Quinasa 9 Dependiente de la Ciclina/metabolismo , Genoma , Células HEK293 , Humanos , Metilación , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Análisis de Secuencia de ADN , Proteína smad3/metabolismo , Sitio de Iniciación de la Transcripción , Factor de Crecimiento Transformador beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA