Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 94(5): 969-986, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37526361

RESUMEN

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Niño , Animales , Gatos , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/veterinaria , Insuficiencia Multiorgánica/terapia , Vectores Genéticos , Sistema Nervioso Central/patología , Terapia Genética
2.
Brain ; 145(2): 655-669, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34410345

RESUMEN

GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal ß-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral (AAV) vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline ß-galactosidase was intravenously administered at 1.5×1013 vector genomes/kg body weight to six GM1 cats at ∼1 month of age. The animals were divided into two cohorts: (i) a long-term group, which was followed to humane end point; and (ii) a short-term group, which was analysed 16 weeks post-treatment. Clinical assessments included neurological exams, CSF and urine biomarkers, and 7 T MRI and magentic resonance spectroscopy (MRS). Post-mortem analysis included ß-galactosidase and virus distribution, histological analysis and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurological function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. CSF biomarkers were normalized, indicating decreased CNS cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. MRI and MRS showed partial preservation of the brain in treated animals, which was supported by post-mortem histological evaluation. ß-Galactosidase activity was increased throughout the CNS, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and CSF. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal ß-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of ß-galactosidase activity in the CNS and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. These data support the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.


Asunto(s)
Gangliosidosis GM1 , Enfermedades Neurodegenerativas , Animales , Biomarcadores , Gatos , Dependovirus/genética , Gangliósido G(M1)/uso terapéutico , Gangliósidos , Gangliosidosis GM1/genética , Gangliosidosis GM1/patología , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Humanos , Calidad de Vida , Distribución Tisular , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
3.
PLoS Genet ; 16(12): e1008671, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290415

RESUMEN

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Encefalopatías/veterinaria , Enfermedades de los Gatos/genética , Corteza Cerebral/metabolismo , Mutación con Pérdida de Función , Fosfoproteínas/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Encefalopatías/genética , Encefalopatías/patología , Enfermedades de los Gatos/patología , Gatos , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Neurogénesis , Fosfoproteínas/metabolismo
4.
Gene Ther ; 28(3-4): 142-154, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32884151

RESUMEN

Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by defects in the ß-subunit of ß-N-acetylhexosaminidase (Hex), the enzyme that catabolizes GM2 ganglioside. Hex deficiency causes neuronal storage of GM2 and related glycoconjugates, resulting in progressive neurodegeneration and death, typically in infancy. No effective treatment exists for human patients. Adeno-associated virus (AAV) gene therapy led to improved clinical outcome and survival of SD cats treated before the onset of disease symptoms. Most human patients are diagnosed after clinical disease onset, so it is imperative to test AAV-gene therapy in symptomatic SD cats to provide a realistic indication of therapeutic benefits that can be expected in humans. In this study, AAVrh8 vectors injected into the thalamus and deep cerebellar nuclei of symptomatic SD cats resulted in widespread central nervous system enzyme distribution, although a substantial burden of storage material remained. Cats treated in the early symptomatic phase showed delayed disease progression and a significant survival increase versus untreated cats. Treatment was less effective when administered later in the disease course, although therapeutic benefit was still possible. Results are encouraging for the treatment of human patients and provide support for the development AAV-gene therapy for human SD.


Asunto(s)
Enfermedad de Sandhoff , Animales , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genética
5.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592687

RESUMEN

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Enfermedad de Sandhoff/terapia , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Mutación , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , Transgenes , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
6.
Mol Ther ; 28(2): 411-421, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31813800

RESUMEN

Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.


Asunto(s)
Cisterna Magna/metabolismo , Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Transducción Genética , Animales , Catéteres , Sistema Nervioso Central/metabolismo , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Espinales , Imagen por Resonancia Magnética , Modelos Animales , Ovinos , Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Transgenes , Grabación en Video
7.
Mol Ther ; 25(4): 892-903, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28236574

RESUMEN

GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.


Asunto(s)
Biomarcadores , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Terapia Genética , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Gatos , Dependovirus/clasificación , Dependovirus/genética , Modelos Animales de Enfermedad , Electroencefalografía , Gangliosidosis GM1/mortalidad , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Resultado del Tratamiento
8.
Mol Ther ; 24(4): 726-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26708003

RESUMEN

Effective gene delivery to the central nervous system (CNS) is vital for development of novel gene therapies for neurological diseases. Adeno-associated virus (AAV) vectors have emerged as an effective platform for in vivo gene transfer, but overall neuronal transduction efficiency of vectors derived from naturally occurring AAV capsids after systemic administration is relatively low. Here, we investigated the possibility of improving CNS transduction of existing AAV capsids by genetically fusing peptides to the N-terminus of VP2 capsid protein. A novel vector AAV-AS, generated by the insertion of a poly-alanine peptide, is capable of extensive gene transfer throughout the CNS after systemic administration in adult mice. AAV-AS is 6- and 15-fold more efficient than AAV9 in spinal cord and cerebrum, respectively. The neuronal transduction profile varies across brain regions but is particularly high in the striatum where AAV-AS transduces 36% of striatal neurons. Widespread neuronal gene transfer was also documented in cat brain and spinal cord. A single intravenous injection of an AAV-AS vector encoding an artificial microRNA targeting huntingtin (Htt) resulted in 33-50% knockdown of Htt across multiple CNS structures in adult mice. This novel AAV-AS vector is a promising platform to develop new gene therapies for neurodegenerative disorders.


Asunto(s)
Proteínas de la Cápside/metabolismo , Sistema Nervioso Central/metabolismo , Péptidos/genética , Transducción Genética , Animales , Células CHO , Proteínas de la Cápside/genética , Gatos , Línea Celular , Cricetulus , Dependovirus/genética , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/genética , Ratones , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
9.
Mol Ther ; 24(7): 1247-57, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27117222

RESUMEN

Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, ß-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.


Asunto(s)
Proteínas de la Cápside/genética , Sistema Nervioso Central/metabolismo , Dependovirus/fisiología , Vectores Genéticos/genética , Músculos/metabolismo , Transducción Genética , Tropismo Viral , Animales , Proteínas de la Cápside/química , Dependovirus/clasificación , Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Transgenes
10.
J Lipid Res ; 56(5): 1006-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25795792

RESUMEN

Bis(monoacylglycero)phosphate (BMP) is a negatively charged glycerophospholipid with an unusual sn-1;sn-1' structural configuration. BMP is primarily enriched in endosomal/lysosomal membranes. BMP is thought to play a role in glycosphingolipid degradation and cholesterol transport. Elevated BMP levels have been found in many lysosomal storage diseases (LSDs), suggesting an association with lysosomal storage material. The gangliosidoses are a group of neurodegenerative LSDs involving the accumulation of either GM1 or GM2 gangliosides resulting from inherited deficiencies in ß-galactosidase or ß-hexosaminidase, respectively. Little information is available on BMP levels in gangliosidosis brain tissue. Our results showed that the content of BMP in brain was significantly greater in humans and in animals (mice, cats, American black bears) with either GM1 or GM2 ganglioside storage diseases, than in brains of normal subjects. The storage of BMP and ganglioside GM2 in brain were reduced similarly following adeno-associated viral-mediated gene therapy in Sandhoff disease mice. We also found that C22:6, C18:0, and C18:1 were the predominant BMP fatty acid species in gangliosidosis brains. The results show that BMP accumulates as a secondary storage material in the brain of a broad range of mammals with gangliosidoses.


Asunto(s)
Enfermedades de los Gatos/metabolismo , Gangliosidosis GM1/veterinaria , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Enfermedad de Sandhoff/veterinaria , Animales , Encéfalo/metabolismo , Gatos , Femenino , Gangliosidosis GM1/metabolismo , Humanos , Metabolismo de los Lípidos , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Enfermedad de Sandhoff/metabolismo , Ursidae
11.
Mol Genet Metab ; 116(1-2): 80-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25971245

RESUMEN

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


Asunto(s)
Terapia Genética , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/uso terapéutico , Adenoviridae/genética , Estructuras Animales/patología , Animales , Gatos , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/patología , Mucopolisacaridosis/terapia , Fenotipo , Enfermedad de Sandhoff/fisiopatología , Enfermedad de Sandhoff/orina
12.
Mol Ther ; 21(7): 1306-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23689599

RESUMEN

Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.


Asunto(s)
Enfermedades de los Gatos/enzimología , Enfermedades de los Gatos/terapia , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Enfermedades de los Gatos/genética , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/genética , Enfermedad de Sandhoff/genética , beta-N-Acetilhexosaminidasas/genética
13.
Stem Cells Dev ; 33(5-6): 117-127, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164117

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSC-EVs) have been proposed as a novel therapeutic tool with numerous clinically related advantages. However, their characteristics and functionality are dependent on the source of MSCs and their cell culture conditions. Fetal bovine serum (FBS) provides a source of nutrients and growth factors to the cultured cells. However, certain pitfalls are associated with its supplementation to the culture media, including introduction of exogenous FBS-derived EVs to the cultured cells. Thus, recent practices recommend utilization of serum-free (SF) media or EV-depleted FBS. On the contrary, evidence suggests that the immunomodulatory ability of MSC-EVs can be improved by exposing MSCs to an inflammatory (IF) environment. The objective of this study was to (1) compare EVs isolated from two tissue sources of MSCs that were exposed to various cell culture conditions and (2) to evaluate their anti-inflammatory effects. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and umbilical cord-derived mesenchymal stromal cells (UC-MSCs) were exposed to either a SF media environment, an IF environment, or media supplemented with 5% EV-depleted FBS. Following isolation of MSC-EVs, the isolates were quantified and evaluated for particle size, phenotypic changes, and their immunomodulatory potential. A statistically significant difference was not identified on the yield and protein concentration of different isolates of EVs from BM-MSCs and UC-MSCs, and all isolates had a circular appearance as evaluated via electron microscopy. A significant difference was identified on the phenotype of different EVs isolates; however, all isolates expressed classical markers such as CD9, CD63, and CD81. The addition of BM-derived MSC-EVs from FBS environment or UC-derived MSC-EVs from IF environment resulted in statistically significant downregulation of IL-6 messenger RNA (mRNA) in stimulated leukocytes. This study confirms that EVs produced by different MSC sources and cell culture conditions affect their phenotype and their immunomodulatory capacities.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Médula Ósea , Técnicas de Cultivo de Célula , Vesículas Extracelulares/metabolismo , Células Cultivadas , Cordón Umbilical , Medio de Cultivo Libre de Suero/farmacología , Células de la Médula Ósea
14.
Front Microbiol ; 15: 1337917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800749

RESUMEN

Introduction: Microbial population structures within fecal samples are vital for disease screening, diagnosis, and gut microbiome research. The two primary methods for collecting feline fecal samples are: (1) using a fecal loop, which retrieves a rectal sample using a small, looped instrument, and (2) using the litter box, which collects stool directly from the litter. Each method has its own advantages and disadvantages and is suitable for different research objectives. Methods and results: Whole-genome shotgun metagenomic sequencing were performed on the gut microbiomes of fecal samples collected using these two methods from 10 adult cats housed in the same research facility. We evaluated the influence of collection methods on feline microbiome analysis, particularly their impact on DNA extraction, metagenomic sequencing yield, microbial composition, and diversity in subsequent gut microbiome analyses. Interestingly, fecal sample collection using a fecal loop resulted in a lower yield of microbial DNA compared to the litterbox method (p = 0.004). However, there were no significant differences between the two groups in the proportion of host contamination (p = 0.106), virus contamination (p = 0.232), relative taxonomy abundance of top five phyla (Padj > 0.638), or the number of microbial genes covered (p = 0.770). Furthermore, no significant differences were observed in alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, and the relative abundance of taxonomic units. Discussion: These two sample collection methods do not affect microbial population structures within fecal samples and collecting fecal samples directly from the litterbox within 6 hours after defecation can be considered a reliable approach for microbiome research.

15.
EBioMedicine ; 92: 104627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37267847

RESUMEN

BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.


Asunto(s)
Gangliosidosis GM1 , Enfermedades Neurodegenerativas , Animales , Gangliosidosis GM1/genética , Gangliosidosis GM1/terapia , Gangliosidosis GM1/patología , Enfermedades Neurodegenerativas/terapia , Cromatografía Liquida , Espectrometría de Masas en Tándem , beta-Galactosidasa/genética , beta-Galactosidasa/química , beta-Galactosidasa/uso terapéutico , Biomarcadores/líquido cefalorraquídeo , Terapia Genética
16.
Mol Genet Metab ; 107(1-2): 203-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22784478

RESUMEN

Deficiencies of lysosomal ß-D-galactosidase can result in GM1 gangliosidosis, a severe neurodegenerative disease characterized by massive neuronal storage of GM1 ganglioside in the brain. Currently there are no available therapies that can even slow the progression of this disease. Enzyme enhancement therapy utilizes small molecules that can often cross the blood brain barrier, but are also often competitive inhibitors of their target enzyme. It is a promising new approach for treating diseases, often caused by missense mutations, associated with dramatically reduced levels of functionally folded enzyme. Despite a number of positive reports based on assays performed with patient cells, skepticism persists that an inhibitor-based treatment can increase mutant enzyme activity in vivo. To date no appropriate animal model, i.e., one that recapitulates a responsive human genotype and clinical phenotype, has been reported that could be used to validate enzyme enhancement therapy. In this report, we identify a novel enzyme enhancement-agent, N-nonyl-deoxygalactonojirimycin, that enhances the mutant ß-galactosidase activity in the lysosomes of a number of patient cell lines containing a variety of missense mutations. We then demonstrate that treatment of cells from a previously described, naturally occurring feline model (that biochemically, clinically and molecularly closely mimics GM1 gangliosidosis in humans) with this molecule, results in a robust enhancement of their mutant lysosomal ß-galactosidase activity. These data indicate that the feline model could be used to validate this therapeutic approach and determine the relationship between the disease stage at which this therapy is initiated and the maximum clinical benefits obtainable.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Terapia de Reemplazo Enzimático , Gangliosidosis GM1/metabolismo , Proteínas Mutantes/metabolismo , beta-Galactosidasa/metabolismo , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/farmacología , Animales , Gatos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Gangliosidosis GM1/tratamiento farmacológico , Gangliosidosis GM1/genética , Calor , Humanos , Concentración de Iones de Hidrógeno , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Mutación , Desnaturalización Proteica/efectos de los fármacos , Resultado del Tratamiento , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/química
17.
Microbiol Spectr ; 10(3): e0083722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467389

RESUMEN

Overweight and obesity are growing health problems in domestic cats, increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease, and decreasing longevity. The signature of obesity in the feline gut microbiota has not been studied at the whole-genome metagenomic level. We performed whole-genome shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and eight normal cats housed in the same research environment. We obtained 271 Gbp of sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 million annotated microbial genes. In the obese cat microbiome, we discovered a significant reduction in microbial diversity (P < 0.01) and Firmicutes abundance (P = 0.005), as well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) validation revealed significant increases of Bifidobacterium sp., Olsenella provencensis, Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota among 400 enriched species, whereas 1,525 bacterial species have decreased abundance in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized Erysipelotrichaceae bacterium are highly abundant (>0.05%) in the normal gut with over 400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are significantly overrepresented in the obese compared with the normal cat microbiome. In conclusion, we discovered dramatically decreased microbial diversity in obese cat gut microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat microbiome composition, abundance, and functional capacities provide new insights into feline obesity. IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for treating feline obesity are lacking. Physical exercise and calorie restrictions are commonly used for weight loss but with limited efficacy. Through comprehensive analyses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the obese gut microbiome, including four bacterial species significantly enriched and two species depleted in the obese cats. The key bacterial community and functional capacity alterations discovered from this study will inform new weight management strategies for obese cats, such as evaluations of specific diet formulas that alter the microbiome composition, and the development of prebiotics and probiotics that promote the increase of beneficial species and the depletion of obesity-associated species. Interestingly, these bacteria identified in our study were also reported to affect the weight loss success in human patients, suggesting translational potential in human obesity.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias/genética , Gatos , Heces/microbiología , Microbioma Gastrointestinal/genética , Metagenoma , Ratones , Obesidad/genética , Obesidad/microbiología , Obesidad/veterinaria , Sobrepeso/genética , Pérdida de Peso/genética
18.
J Am Vet Med Assoc ; 261(4): 592-596, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476414

RESUMEN

Rabies is the deadliest viral infection known, with no reliable treatment, and although it is entirely preventable, rabies continues to kill more than 60,000 people every year, mostly children in countries where dog rabies is endemic. America is only 1 generation away from the time when rabies killed more than 10,000 animals and 50 Americans every year, but 3 to 5 Americans continue to die annually from rabies. Distressingly, > 50,000 Americans undergo rabies prevention therapy every year after exposure to potentially rabid animals. While enormous progress has been made, more must be done to defeat this ancient but persistent, fatal zoonosis. In the US, lack of public awareness and ambivalence are the greatest dangers imposed by rabies, resulting in unnecessary exposures, anxiety, and risk. Veterinarians have a special role in informing and reassuring the public about prevention and protection from rabies. This summary of current facts and future advances about rabies will assist veterinarians in informing their clients about the disease.


Asunto(s)
Enfermedades de los Perros , Vacunas Antirrábicas , Rabia , Veterinarios , Animales , Perros , Humanos , Rabia/epidemiología , Rabia/prevención & control , Rabia/veterinaria , Zoonosis , Ansiedad , Trastornos de Ansiedad , Vacunas Antirrábicas/uso terapéutico , Enfermedades de los Perros/prevención & control , Enfermedades de los Perros/epidemiología
19.
Mol Ther Methods Clin Dev ; 27: 281-292, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36320411

RESUMEN

GM1 gangliosidosis is a rare, inherited neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes the lysosomal hydrolase acid ß-galactosidase (ß-gal). ß-gal deficiency leads to toxic accumulation of GM1 ganglioside, predominantly in the central nervous system (CNS), resulting in progressive neurodegeneration. LYS-GM101 is an AAVrh.10-based gene therapy vector carrying the human GLB1 cDNA. The efficacy of intra-cerebrospinal fluid injection of LYS-GM101 analogs was demonstrated in GM1 mouse and cat models with widespread diffusion of ß-gal and correction of GM1 ganglioside accumulation in the CNS without observable adverse effects. Clinical dose selection was performed, based on a good-laboratory-practice study, in nonhuman primates (NHPs) using the clinical LYS-GM101 vector. A broadly distributed increase of ß-gal activity was observed in NHP brain 3 months after intra-cisterna magna injection of LYS-GM101 at 1.0 × 1012 vg/mL CSF and 4.0 × 1012 vg/mL CSF, with 20% and 60% increases compared with vehicle-treated animals, respectively. Histopathologic examination revealed asymptomatic adverse changes in the sensory pathways of the spinal cord and dorsal root ganglia in both sexes and at both doses. Taken as a whole, these pre-clinical data support the initiation of a clinical study with LYS-GM101 for the treatment of GM1 gangliosidosis.

20.
Nat Med ; 28(2): 251-259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145305

RESUMEN

Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.


Asunto(s)
Enfermedad de Tay-Sachs , Anticonvulsivantes , Dependovirus/genética , Terapia Genética , Humanos , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA