Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 200: 106629, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111704

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) in neonates causes mortality and neurologic morbidity, including poor cognition with a complex neuropathology. Injury to the cholinergic basal forebrain and its rich innervation of cerebral cortex may also drive cognitive pathology. It is uncertain whether genes associated with adult cognition-related neurodegeneration worsen outcomes after neonatal HIE. We hypothesized that neocortical damage caused by neonatal HI in mice is ushered by persistent cholinergic innervation and interneuron (IN) pathology that correlates with cognitive outcome and is exacerbated by genes linked to Alzheimer's disease. We subjected non-transgenic (nTg) C57Bl6 mice and mice transgenically (Tg) expressing human mutant amyloid precursor protein (APP-Swedish variant) and mutant presenilin (PS1-ΔE9) to the Rice-Vannucci HI model on postnatal day 10 (P10). nTg and Tg mice with sham procedure were controls. Visual discrimination (VD) was tested for cognition. Cortical and hippocampal cholinergic axonal and IN pathology and Aß plaques, identified by immunohistochemistry for choline acetyltransferase (ChAT) and 6E10 antibody respectively, were counted at P210. Simple ChAT+ axonal swellings were present in all sham and HI groups; Tg mice had more than their nTg counterparts, but HI did not affect the number of axonal swellings in APP/PS1 Tg mice. In contrast, complex ChAT+ neuritic clusters (NC) occurred only in Tg mice; HI increased that burden. The abundance of ChAT+ clusters in specific regions correlated with decreased VD. The frequency of attritional ChAT+ INs in the entorhinal cortex (EC) was increased in Tg shams relative to their nTg counterparts, but HI obviated this difference. Cholinergic IN pathology in EC correlated with NC number. The Aß deposition in APP/PS1 Tg mice was not exacerbated by HI, nor did it correlate with other metrics. Adult APP/PS1 Tg mice have significant cortical cholinergic axon and EC ChAT+ IN pathologies; some pathology was exacerbated by neonatal HI and correlated with VD. Mechanisms of neonatal HI induced cognitive deficits and cortical neuropathology may be modulated by genetic risk, perhaps accounting for some of the variability in outcomes.

2.
BMC Psychiatry ; 24(1): 409, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816707

RESUMEN

BACKGROUND: Eating disorders (EDs) are serious, often chronic, conditions associated with pronounced morbidity, mortality, and dysfunction increasingly affecting young people worldwide. Illness progression, stages and recovery trajectories of EDs are still poorly characterised. The STORY study dynamically and longitudinally assesses young people with different EDs (restricting; bingeing/bulimic presentations) and illness durations (earlier; later stages) compared to healthy controls. Remote measurement technology (RMT) with active and passive sensing is used to advance understanding of the heterogeneity of earlier and more progressed clinical presentations and predictors of recovery or relapse. METHODS: STORY follows 720 young people aged 16-25 with EDs and 120 healthy controls for 12 months. Online self-report questionnaires regularly assess ED symptoms, psychiatric comorbidities, quality of life, and socioeconomic environment. Additional ongoing monitoring using multi-parametric RMT via smartphones and wearable smart rings ('Oura ring') unobtrusively measures individuals' daily behaviour and physiology (e.g., Bluetooth connections, sleep, autonomic arousal). A subgroup of participants completes additional in-person cognitive and neuroimaging assessments at study-baseline and after 12 months. DISCUSSION: By leveraging these large-scale longitudinal data from participants across ED diagnoses and illness durations, the STORY study seeks to elucidate potential biopsychosocial predictors of outcome, their interplay with developmental and socioemotional changes, and barriers and facilitators of recovery. STORY holds the promise of providing actionable findings that can be translated into clinical practice by informing the development of both early intervention and personalised treatment that is tailored to illness stage and individual circumstances, ultimately disrupting the long-term burden of EDs on individuals and their families.


Asunto(s)
Trastornos de Alimentación y de la Ingestión de Alimentos , Humanos , Adolescente , Adulto Joven , Adulto , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Trastornos de Alimentación y de la Ingestión de Alimentos/diagnóstico , Estudios Prospectivos , Femenino , Masculino , Progresión de la Enfermedad , Tecnología de Sensores Remotos/métodos , Tecnología de Sensores Remotos/instrumentación , Teléfono Inteligente , Estudios Longitudinales , Calidad de Vida/psicología
3.
Front Cell Neurosci ; 18: 1353542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469354

RESUMEN

Introduction: Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods: Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results: By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion: This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.

4.
RSC Adv ; 14(26): 18444-18452, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38860243

RESUMEN

The family of radical-cation salts ß''-(BEDT-TTF)4[(A)M3+(C2O4)3]·guest (M = Fe, Cr, Ga, Al, Co, Mn, Rh, Ru; A = K+, H3O+, NH4 +) has produced superconductors, metals, semiconductors, and metal-insulators through introduction of different guest molecules into the structure. We present three new additions to the family ß''-(BEDT-TTF)4[(A)Cr(C2O4)3]·guest with the guest molecules toluene, phenol, or salicylaldehyde. These new guests are liquid or solid additives within the electrocrystallisation medium. All three salts show metallic behaviour from room temperature down to <10 K and do not show a superconducting transition.

5.
Sci Adv ; 10(29): eadk1817, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018390

RESUMEN

Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.


Asunto(s)
Isquemia Encefálica , Imagen de Difusión por Resonancia Magnética , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Ratones , Humanos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino
6.
Mayo Clin Proc Digit Health ; 1(4): 498-509, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38169882

RESUMEN

Objective: To develop and evaluate a smartphone application that accurately measures height and provides notifications when abnormalities are detected. Patients and Methods: A total of 145 (75 boys) participants with a mean age ± SD of 8.7±4.5 years (range, 1.0-17.0 years), from the Children's Hospital at Barts Health Trust, London, United Kingdom, were enrolled in the study. "GrowthMonitor" (UCL Creatives) iPhone application (GMA) measures height using augmented reality. Using population-based (UK-WHO) references, algorithms calculated height SD score (HSDS), distance from target height (THSDSDEV), and HSDS change over time (ΔHSDS). Pre-established thresholds discriminated normal/abnormal growth. The GMA and a stadiometer (Harpenden; gold standard) measured standing heights of children at routine clinic visits. A subset of parents used GMA to measure their child's height at home. Outcome targets were 95% of GMA measurements within ±0.5 SDS of the stadiometer and the correct identification of abnormal HSDS, THSDSDEV, and ΔHSDS. Results: Bland-Altman plots revealed no appreciable bias in differences between paired study team GMA and stadiometer height measurements, with a mean of the differences of 0.11 cm with 95% limits of agreement of -2.21 to 2.42 cm. There was no evidence of greater bias occurring for either shorter/younger children or taller/older children. The 2 methods of measurements were highly correlated (R=0.999). GrowthMonitor iPhone application measurements performed by parents in clinic and at home were slightly less accurate. The κ coefficient indicated reliable and consistent agreement of flag alerts for HSDS (κ=0.74) and THSDSDEV (κ=0.88) between 83 paired GMA and stadiometer measurements. GrowthMonitor iPhone application yielded a detection rate of 96% and 97% for HSDS-based and THSDSDEV-based red flags, respectively. Forty-two (18 boys) participants had GMA calculated ΔHSDS using an additional height measurement 6-16 months later, and no abnormal flag alerts were triggered for ΔHSDS values. Conclusion: GrowthMonitor iPhone application provides the potential for parents/carers and health care professionals to capture serial height measurements at home and without specialized equipment. Reliable interpretation and flagging of abnormal measurements indicate the potential of this technology to transform childhood growth monitoring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA