Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 96(4): e0186521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878887

RESUMEN

Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high-throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p, which has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs, in addition to 375-3p, were further assessed using a second cell-based p53 stability reporter system, as well as in nonreporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. IMPORTANCE Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high-throughput live cell assay, we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.


Asunto(s)
Alphapapillomavirus/metabolismo , MicroARNs/genética , Proteína p53 Supresora de Tumor/metabolismo , Alphapapillomavirus/genética , Apoptosis , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo
2.
J Biol Chem ; 293(47): 18387-18399, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30257870

RESUMEN

Deregulation of the HECT ubiquitin ligase UBE3A/E6AP has been implicated in Angelman syndrome as well as autism spectrum disorders. We and others have previously identified the 26S proteasome as one of the major UBE3A-interacting protein complexes. Here, we characterize the interaction of UBE3A and the proteasomal subunit PSMD4 (Rpn10/S5a). We map the interaction to the highly conserved Zn2+-binding N-terminal (AZUL) domain of UBE3A, the integrity of which is crucial for binding to PSMD4. Interestingly, two Angelman syndrome point mutations that affect the AZUL domain show an impaired ability to bind PSMD4. Although not affecting the ubiquitin ligase or the estrogen receptor α-mediated transcriptional regulation activities, these AZUL domain mutations prevent UBE3A from stimulating the Wnt/ß-catenin signaling pathway. Taken together, our data indicate that impaired binding to the 26S proteasome and consequential deregulation of Wnt/ß-catenin signaling might contribute to the functional defect of these mutants in Angelman syndrome.


Asunto(s)
Síndrome de Angelman/enzimología , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Zinc/metabolismo , Síndrome de Angelman/genética , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Unión al ARN , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt
3.
J Proteome Res ; 14(2): 953-66, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25476789

RESUMEN

HERC2 is a large E3 ubiquitin ligase with multiple structural domains that has been implicated in an array of cellular processes. Mutations in HERC2 are linked to developmental delays and impairment caused by nervous system dysfunction, such as Angelman Syndrome and autism-spectrum disorders. However, HERC2 cellular activity and regulation remain poorly understood. We used a broad proteomic approach to survey the landscape of cellular proteins that interact with HERC2. We identified nearly 300 potential interactors, a subset of which we validated binding to HERC2. The potential HERC2 interactors included the eukaryotic translation initiation factor 3 complex, the intracellular transport COPI coatomer complex, the glycogen regulator phosphorylase kinase, beta-catenin, PI3 kinase, and proteins involved in fatty acid transport and iron homeostasis. Through a complex bioinformatic analysis of potential interactors, we linked HERC2 to cellular processes including intracellular protein trafficking and transport, metabolism of cellular energy, and protein translation. Given its size, multidomain structure, and association with various cellular activities, HERC2 may function as a scaffold to integrate protein complexes and bridge critical cellular pathways. This work provides a significant resource with which to interrogate HERC2 function more deeply and evaluate its contributions to mechanisms governing cellular homeostasis and disease.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteoma/análisis , Proteoma/metabolismo , Factores de Intercambio de Guanina Nucleótido/análisis , Humanos , Proteínas/análisis , Proteínas/metabolismo , Proteínas/fisiología , Proteómica , Ubiquitina-Proteína Ligasas
4.
Virology ; 560: 96-109, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051479

RESUMEN

Approximately 5% of cancers are caused by high-risk human papillomaviruses. Although very effective preventive vaccines will reduce this cancer burden significantly over the next several decades, they have no therapeutic effect for those already infected and remaining at risk for malignant progression of hrHPV lesions. HPV-associated cancers are dependent upon the expression of the viral E6 and E7 oncogenes. The oncogenic function of hrHPV E6 relies partially on its ability to induce p53 degradation. Since p53 is generally wildtype in hrHPV-associated cancers, p53 stabilization arrests proliferation, induces apoptosis and/or results in senescence. Here we describe a live cell, image-based high-throughput screen to identify compounds that stabilize p53 and/or affect viability in HPV-positive cancer HeLa cells. We validate the robustness and potential of this screening assay by assessing the activities of approximately 6,500 known bioactive compounds, illustrating its capability to function as a platform to identify novel therapeutics for hrHPV.


Asunto(s)
Aurora Quinasas/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Topoisomerasa/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Femenino , Células HeLa , Papillomavirus Humano 18/genética , Humanos , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/diagnóstico por imagen , Infecciones por Papillomavirus/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología
5.
J Virol ; 83(17): 8683-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19553317

RESUMEN

The papillomavirus (PV) E2 protein is an important regulator of the viral life cycle. It has diverse roles in viral transcription, DNA replication, and genome maintenance. Our laboratory has previously identified the cellular bromodomain protein Brd4 as a key interacting partner of E2. Brd4 mediates the transcriptional activation function of E2 and plays an important role in viral genome maintenance in dividing cells. E2 interacts with the C-terminal domain (CTD) of Brd4, and the CTD functions in a dominant-negative manner through binding E2 and interfering with E2's interaction with the full-length Brd4 protein. Previous studies have shown that PV E2 proteins are short lived; however, the mechanisms regulating their stability and degradation have not yet been well established. In this study, we explored the role of Brd4 in the regulation of bovine PV 1 (BPV1) and human PV 16 (HPV16) E2 stability. Expression of the Brd4 CTD dramatically increases E2 levels. Both BPV1 E2 and HPV16 E2 are regulated by ubiquitylation, and Brd4 CTD expression blocks this ubiquitylation, thus stabilizing the E2 protein. Furthermore, we have identified the cullin-based E3 ligases and specifically cullin-3 as potential components of the ubiquitylation machinery that targets both BPV1 and HPV16 E2 for ubiquitylation. Expression of the Brd4 CTD blocks the interaction between E2 and the cullin-3 complex. In addition to Brd4's role in mediating E2 transcription and genome tethering activities, these data suggest a potential role for Brd4 in regulating E2 stability and protein levels within PV-infected cells.


Asunto(s)
Papillomavirus Bovino 1/fisiología , Proteínas de Unión al ADN/metabolismo , Papillomavirus Humano 16/fisiología , Proteínas Nucleares/fisiología , Proteínas Oncogénicas Virales/metabolismo , Factores de Transcripción/fisiología , Proteínas Virales/metabolismo , Animales , Bovinos , Proteínas de Ciclo Celular , Proteínas Cullin/metabolismo , Humanos , Estabilidad Proteica , Ubiquitinación
6.
J Mol Biol ; 430(7): 1024-1050, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-29426014

RESUMEN

Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.


Asunto(s)
Mapeo de Interacción de Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo
7.
Mol Cell Biol ; 32(15): 3095-106, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22645313

RESUMEN

The E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally. Using a proteomic approach, we have identified and validated several new E6AP-interacting proteins, including HIF1AN, NEURL4, and mitogen-activated protein kinase 6 (MAPK6). E6AP exists as part of several different protein complexes, including the proteasome and an independent high-molecular-weight complex containing HERC2, NEURL4, and MAPK6. In examining the functional consequence of its interaction with the proteasome, we found that UBE3C (another proteasome-associated ubiquitin ligase), but not E6AP, contributes to proteasomal processivity in mammalian cells. We also found that E6 associates with the HERC2-containing high-molecular-weight complex through its binding to E6AP. These proteomic studies reveal a level of complexity for E6AP that has not been previously appreciated and identify a number of new cellular proteins through which E6AP may be regulated or functioning.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Humanos , Proteína Quinasa 6 Activada por Mitógenos/genética , Oxigenasas de Función Mixta/genética , Papillomaviridae/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteómica , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA