Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 81(5): 1058-1073.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421363

RESUMEN

Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Portadoras/genética , ADN de Helmintos/genética , Proteínas de Unión al ADN/genética , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , ADN de Helmintos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Recombinasa Rad51/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transducción de Señal , Imagen Individual de Molécula
2.
PLoS Genet ; 19(2): e1010666, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809245

RESUMEN

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Ratones , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Emparejamiento Cromosómico , Segregación Cromosómica , Mamíferos/genética , Meiosis , Profase Meiótica I , Complejo Sinaptonémico/metabolismo
3.
PLoS Genet ; 18(10): e1010136, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36279281

RESUMEN

Accurate chromosome segregation requires a cohesin-mediated physical attachment between chromosomes that are to be segregated apart, and a bipolar spindle with microtubule plus ends emanating from exactly two poles toward the paired chromosomes. We asked whether the striking bipolar structure of C. elegans meiotic chromosomes is required for bipolarity of acentriolar female meiotic spindles by time-lapse imaging of mutants that lack cohesion between chromosomes. Both a spo-11 rec-8 coh-4 coh-3 quadruple mutant and a spo-11 rec-8 double mutant entered M phase with separated sister chromatids lacking any cohesion. However, the quadruple mutant formed an apolar spindle whereas the double mutant formed a bipolar spindle that segregated chromatids into two roughly equal masses. Residual non-cohesive COH-3/4-dependent cohesin on separated sister chromatids of the double mutant was sufficient to recruit haspin-dependent Aurora B kinase, which mediated bipolar spindle assembly in the apparent absence of chromosomal bipolarity. We hypothesized that cohesin-dependent Aurora B might activate or inhibit spindle assembly factors in a manner that would affect their localization on chromosomes and found that the chromosomal localization patterns of KLP-7 and CLS-2 correlated with Aurora B loading on chromosomes. These results demonstrate that cohesin is essential for spindle assembly and chromosome segregation independent of its role in sister chromatid cohesion.


Asunto(s)
Caenorhabditis elegans , Proteínas Cromosómicas no Histona , Animales , Femenino , Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/genética , Meiosis/genética , Cromátides/genética , Segregación Cromosómica/genética , Huso Acromático/genética , Cohesinas
4.
PLoS Genet ; 18(1): e1010025, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081133

RESUMEN

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.


Asunto(s)
Aminopeptidasas/genética , Caenorhabditis elegans/genética , Inestabilidad Genómica , Aminopeptidasas/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Proliferación Celular , Replicación del ADN , Prolina/metabolismo
5.
Genes Dev ; 30(21): 2404-2416, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881602

RESUMEN

N-terminal acetylation of the first two amino acids on proteins is a prevalent cotranslational modification. Despite its abundance, the biological processes associated with this modification are not well understood. Here, we mapped the pattern of protein N-terminal acetylation in Caenorhabditis elegans, uncovering a conserved set of rules for this protein modification and identifying substrates for the N-terminal acetyltransferase B (NatB) complex. We observed an enrichment for global protein N-terminal acetylation and also specifically for NatB substrates in the nucleus, supporting the importance of this modification for regulating biological functions within this cellular compartment. Peptide profiling analysis provides evidence of cross-talk between N-terminal acetylation and internal modifications in a NAT substrate-specific manner. In vivo studies indicate that N-terminal acetylation is critical for meiosis, as it regulates the assembly of the synaptonemal complex (SC), a proteinaceous structure ubiquitously present during meiosis from yeast to humans. Specifically, N-terminal acetylation of NatB substrate SYP-1, an SC structural component, is critical for SC assembly. These findings provide novel insights into the biological functions of N-terminal acetylation and its essential role during meiosis.


Asunto(s)
Caenorhabditis elegans/metabolismo , Acetiltransferasa B N-Terminal/metabolismo , Complejo Sinaptonémico/metabolismo , Acetilación , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Meiosis/genética , Mutación , Acetiltransferasa B N-Terminal/genética , Proteínas Nucleares/metabolismo , Proteoma , Complejo Sinaptonémico/química , Complejo Sinaptonémico/genética
6.
PLoS Genet ; 16(11): e1008968, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175901

RESUMEN

In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved "closure motif" region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Emparejamiento Cromosómico , Segregación Cromosómica , Cromosomas , Meiosis/fisiología , Fosforilación , Profase/fisiología , Dominios Proteicos
7.
Genes Dev ; 28(7): 783-96, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24696457

RESUMEN

Piwi-interacting RNAs (piRNA) are small regulatory RNAs with essential roles in maintaining genome integrity in animals and protists. Most Caenorhabditis elegans piRNAs are transcribed from two genomic clusters that likely contain thousands of individual transcription units; however, their biogenesis is not understood. Here we identify and characterize prde-1 (piRNA silencing-defective) as the first essential C. elegans piRNA biogenesis gene. Analysis of prde-1 provides the first direct evidence that piRNA precursors are 28- to 29-nucleotide (nt) RNAs initiating 2 nt upstream of mature piRNAs. PRDE-1 is a nuclear germline-expressed protein that localizes to chromosome IV. PRDE-1 is required specifically for the production of piRNA precursors from genomic loci containing an 8-nt upstream motif, the Ruby motif. The expression of a second class of motif-independent piRNAs is unaffected in prde-1 mutants. We exploited this finding to determine the targets of the motif-independent class of piRNAs. Together, our data provide new insights into both the biogenesis and function of piRNAs in gene regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , ARN Interferente Pequeño/biosíntesis , Secuencias de Aminoácidos , Animales , Cromosomas/genética , Fertilidad/genética , Células Germinativas/fisiología , Mutación , Estabilidad del ARN/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
8.
Mol Cell ; 39(1): 25-35, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20598602

RESUMEN

Fanconi anemia (FA) is a complex cancer susceptibility disorder associated with DNA repair defects and infertility, yet the precise function of the FA proteins in genome maintenance remains unclear. Here we report that C. elegans FANCD2 (fcd-2) is dispensable for normal meiotic recombination but is required in crossover defective mutants to prevent illegitimate repair of meiotic breaks by nonhomologous end joining (NHEJ). In mitotic cells, we show that DNA repair defects of C. elegans fcd-2 mutants and FA-deficient human cells are significantly suppressed by eliminating NHEJ. Moreover, NHEJ factors are inappropriately recruited to sites of replication stress in the absence of FANCD2. Our findings are consistent with the interpretation that FA results from the promiscuous action of NHEJ during DNA repair. We propose that a critical function of the FA pathway is to channel lesions into accurate, as opposed to error-prone, repair pathways.


Asunto(s)
Reparación del ADN/genética , Anemia de Fanconi/genética , Recombinación Genética , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Intercambio Genético , Roturas del ADN de Doble Cadena , Replicación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Meiosis/genética , Mutación/genética , Recombinasa Rad51/metabolismo , Estrés Fisiológico
9.
Mol Cell ; 37(2): 259-72, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122407

RESUMEN

Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Meiosis , Recombinasa Rad51/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/genética , ADN de Helmintos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Recombinación Genética
10.
PLoS Genet ; 10(10): e1004638, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340746

RESUMEN

Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics.


Asunto(s)
Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Fosfoproteínas Fosfatasas/genética , Animales , Caenorhabditis elegans , Intercambio Genético , Roturas del ADN de Doble Cadena , Recombinación Homóloga/genética , Meiosis/genética , Complejo Sinaptonémico/genética
11.
PLoS Genet ; 9(5): e1003497, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23671424

RESUMEN

Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans , Emparejamiento Cromosómico/genética , Cromosomas/genética , Proteínas Mitocondriales/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Núcleo Celular , Meiosis , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Estructura Terciaria de Proteína , Complejo Sinaptonémico/genética
12.
PLoS Genet ; 8(8): e1002880, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22912597

RESUMEN

During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Emparejamiento Cromosómico/genética , Proteínas Nucleares/genética , Precursores de Proteínas/metabolismo , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Microtúbulos , Mutación , Membrana Nuclear , Proteínas Nucleares/metabolismo , Precursores de Proteínas/genética , Complejo Sinaptonémico/genética
13.
Elife ; 122023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650378

RESUMEN

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Asunto(s)
Caenorhabditis elegans , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Animales , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromosómicas no Histona/genética , Cohesinas
14.
Genes (Basel) ; 13(5)2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35627161

RESUMEN

During meiosis, homologous chromosomes must recognize, pair, and recombine with one another to ensure the formation of inter-homologue crossover events, which, together with sister chromatid cohesion, promote correct chromosome orientation on the first meiotic spindle. Crossover formation requires the assembly of axial elements, proteinaceous structures that assemble along the length of each chromosome during early meiosis, as well as checkpoint mechanisms that control meiotic progression by monitoring pairing and recombination intermediates. A conserved family of proteins defined by the presence of a HORMA (HOp1, Rev7, MAd2) domain, referred to as HORMADs, associate with axial elements to control key events of meiotic prophase. The highly conserved HORMA domain comprises a flexible safety belt sequence, enabling it to adopt at least two of the following protein conformations: one closed, where the safety belt encircles a small peptide motif present within an interacting protein, causing its topological entrapment, and the other open, where the safety belt is reorganized and no interactor is trapped. Although functional studies in multiple organisms have revealed that HORMADs are crucial regulators of meiosis, the mechanisms by which HORMADs implement key meiotic events remain poorly understood. In this review, we summarize protein complexes formed by HORMADs, discuss their roles during meiosis in different organisms, draw comparisons to better characterize non-meiotic HORMADs (MAD2 and REV7), and highlight possible areas for future research.


Asunto(s)
Meiosis , Complejo Sinaptonémico , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Meiosis/genética , Huso Acromático/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
15.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36137547

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Asunto(s)
Proteínas de Caenorhabditis elegans , Roturas del ADN de Doble Cadena , Animales , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparación del ADN , Meiosis , ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
16.
Curr Opin Plant Biol ; 11(2): 222-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18294901

RESUMEN

Understanding the barriers that prevent pairing and recombination of the chromosomes from two parental species is important for crop improvement strategies. It had been generally thought that plants do not possess checkpoint mechanisms during meiosis. However, recent data may question this assumption and suggest that exploitation of such mechanisms could be crucial to breeding.


Asunto(s)
Cruzamiento , Meiosis/genética , Plantas/genética , Recombinación Genética/genética
17.
Nat Commun ; 11(1): 4345, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859945

RESUMEN

Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Estructuras Cromosómicas/metabolismo , Meiosis/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Puntos de Control del Ciclo Celular , Quinasa de Punto de Control 2/metabolismo , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Complejo Sinaptonémico/metabolismo , Cohesinas
18.
Dev Cell ; 5(3): 463-74, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12967565

RESUMEN

Here we probe the relationships between assembly of the synaptonemal complex (SC) and progression of recombination between homologous chromosomes during Caenorhabditis elegans meiosis. We identify SYP-2 as a structural component of the SC central region and show that central region assembly depends on proper morphogenesis of chromosome axes. We find that the SC central region is dispensable for initiation of recombination and for loading of DNA strand-exchange protein RAD-51, despite the fact that extensive RAD-51 loading normally occurs in the context of assembled SC. Further, persistence of RAD-51 foci and absence of crossover products in meiotic mutants suggests that SC central region components and recombination proteins MSH-4 and MSH-5 are required to promote conversion of resected double-strand breaks into stable post-strand exchange intermediates. Our data also suggest that early prophase barriers to utilization of sister chromatids as repair templates do not depend on central region assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Meiosis , Proteínas del Tejido Nervioso/fisiología , Recombinación Genética/fisiología , Complejo Sinaptonémico/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Proteínas de Caenorhabditis elegans/metabolismo , Emparejamiento Cromosómico , Cromosomas/metabolismo , Intercambio Genético , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Esterasas/metabolismo , Inmunohistoquímica , Indoles/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/aislamiento & purificación , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51 , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Complejo Sinaptonémico/ultraestructura , Factores de Tiempo
19.
Genetics ; 213(1): 79-96, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31345995

RESUMEN

Proper partitioning of homologous chromosomes during meiosis relies on the coordinated execution of multiple interconnected events: Homologs must locate, recognize, and align with their correct pairing partners. Further, homolog pairing must be coupled to assembly of the synaptonemal complex (SC), a meiosis-specific tripartite structure that maintains stable associations between the axes of aligned homologs and regulates formation of crossovers between their DNA molecules to create linkages that enable their segregation. Here, we identify HAL-3 (Homolog Alignment 3) as an important player in coordinating these key events during Caenorhabditis elegans meiosis. HAL-3, and the previously identified HAL-2, are interacting and interdependent components of a protein complex that localizes to the nucleoplasm of germ cells. hal-3 (or hal-2) mutants exhibit multiple meiotic prophase defects including failure to establish homolog pairing, inappropriate loading of SC subunits onto unpaired chromosome axes, and premature loss of synapsis checkpoint protein PCH-2. Further, loss of hal function results in misregulation of the subcellular localization and activity of Polo-like kinases (PLK-1 and PLK-2), which dynamically localize to different defined subnuclear sites during wild-type prophase progression to regulate distinct cellular events. Moreover, loss of PLK-2 activity partially restores tripartite SC structure in a hal mutant background, suggesting that the defect in pairwise SC assembly in hal mutants reflects inappropriate PLK activity. Together, our data support a model in which the nucleoplasmic HAL-2/HAL-3 protein complex constrains both localization and activity of meiotic Polo-like kinases, thereby preventing premature interaction with stage-inappropriate targets.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis , Proteínas Nucleares/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Mutación , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
20.
Dev Cell ; 48(6): 793-810.e6, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30713076

RESUMEN

Piwi-interacting RNAs (piRNAs) are important for genome regulation across metazoans, but their biogenesis evolves rapidly. In Caenorhabditis elegans, piRNA loci are clustered within two 3-Mb regions on chromosome IV. Each piRNA locus possesses an upstream motif that recruits RNA polymerase II to produce an ∼28 nt primary transcript. We used comparative epigenomics across nematodes to gain insight into the origin, evolution, and mechanism of nematode piRNA biogenesis. We show that the piRNA upstream motif is derived from core promoter elements controlling snRNA transcription. We describe two alternative modes of piRNA organization in nematodes: in C. elegans and closely related nematodes, piRNAs are clustered within repressive H3K27me3 chromatin, while in other species, typified by Pristionchus pacificus, piRNAs are found within introns of active genes. Additionally, we discover that piRNA production depends on sequence signals associated with RNA polymerase II pausing. We show that pausing signals synergize with chromatin to control piRNA transcription.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Epigenómica , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/biosíntesis , Animales , Secuencia de Bases , Evolución Molecular , Sitios Genéticos , Motivos de Nucleótidos/genética , ARN Interferente Pequeño/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA