Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 234, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880625

RESUMEN

BACKGROUND: The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam's microbial communities. RESULTS: Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments' chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. CONCLUSIONS: Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon.


Asunto(s)
Bivalvos , Microbiota , Dibenzodioxinas Policloradas , Contaminantes Químicos del Agua , Animales , Sedimentos Geológicos/química , Transcriptoma , Dibenzofuranos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Dibenzodioxinas Policloradas/análisis , Dibenzodioxinas Policloradas/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Bivalvos/genética , Bivalvos/química , Bivalvos/metabolismo
2.
BMC Biol ; 20(1): 290, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575413

RESUMEN

BACKGROUND: Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS: We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS: Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Drosophila melanogaster/genética , Drosophila , Mamíferos , Simbiosis
3.
Foodborne Pathog Dis ; 14(8): 454-464, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28514180

RESUMEN

BACKGROUND: Vibrio parahaemolyticus is an emerging foodborne pathogen in the Mediterranean, usually associated with shellfish consumption. The increase in the number of outbreaks in Europe is primarily associated with the global warming of the ocean that has a great impact on the spread and genetic selection of waterborne pathogens. The primary role of Italy in Europe's mollusk production, together with the fact that cases of infections with V. parahaemolyticus are not always notified to the European community, highlighted the necessity of acquiring new information about the epidemiological involvement of shellfish products. OBJECTIVE: The aim of the study was to provide useful insights into the first steps of the Risk Assessment associated with V. parahaemolyticus through the molecular characterization of isolates from commercialized mollusks. MATERIALS AND METHODS: A total of 102 strains identified as V. parahaemolyticus were investigated as part of a larger sampling (1-year survey) from several shellfish species collected from the Venice lagoon and the North Adriatic sea. All strains were characterized by multilocus sequence typing and tested for the presence of virulence genes (trh and tdh). The study of sampling/environmental factors and epidemiological analyses was performed to describe the behaviors of the different genetic populations. RESULTS: The population structure analysis highlighted three genetic clusters that could be subject to temperature selection during cold (≤15°C) and warm (>16°C) seasons. Moreover, other factors, such as molluscan species (clams/mussels), probably played a role in the distribution of genetic clusters. Although few strains carried the virulence factors (n = 6 trh+), epidemiological links with clinical isolates and a local dissemination of some sequence types were underlined. CONCLUSION: This work provides a useful background on the genotype spread as a first step in the Hazard Identification in light of future climate changes.


Asunto(s)
Bivalvos/microbiología , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Mariscos , Vibriosis/microbiología , Vibrio parahaemolyticus/clasificación , Animales , Técnicas de Tipificación Bacteriana , Enfermedades Transmitidas por los Alimentos/epidemiología , Humanos , Italia , Tipificación de Secuencias Multilocus , Filogenia , Salud Pública , Estaciones del Año , Vibriosis/epidemiología , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/aislamiento & purificación , Virulencia , Factores de Virulencia
4.
Environ Microbiol ; 18(12): 4974-4989, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27422487

RESUMEN

The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma Bacteriano/genética , Lactobacillus plantarum/genética , Lactobacillus plantarum/aislamiento & purificación , Secuencia de Bases , Evolución Biológica , Hibridación Genómica Comparativa , ADN Bacteriano/genética , Ecosistema , Ambiente , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillus plantarum/fisiología , Fenotipo , Análisis de Secuencia de ADN
5.
Environ Microbiol ; 16(4): 1005-18, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23919504

RESUMEN

The genus Aeromonas comprises ubiquitous bacteria that are known to play several roles in the environment. These bacteria were first described as fish pathogens, but their presence was documented in other reservoirs, such as animals and humans. Today, these bacteria are described as emerging pathogens, but their effective role in human pathogenicity is still controversial. In addition, their taxonomy is heavily debated, as species distinction is often difficult to achieve. To study the interspecies relationships and to investigate their connection with the environment, a multilocus sequence typing scheme previously developed for Aeromonas spp. was applied to 258 strains, and the genetic data were analysed by population software. Sampling was a fundamental step, including several of the main sources of Aeromonas: fish, food products and human cases of disease. The objective was to characterize the isolates and to find potential associations among them according to the following: species, sharing of virulence factors, source and adaptation to a specific habitat. The strains were characterized and demonstrated exceptionally high nucleotide variability in the Aeromonas genus. Among the sampled sources, different species distributions were found, highlighting the occurrence of adaptation processes towards specific habitats.


Asunto(s)
Aeromonas/genética , Aeromonas/aislamiento & purificación , Aeromonas/patogenicidad , Animales , Secuencia de Bases , China , Crustáceos/microbiología , Ecosistema , Peces/microbiología , Microbiología de Alimentos , Gastroenteritis/microbiología , Humanos , Italia , Datos de Secuencia Molecular , Moluscos/microbiología , Tipificación de Secuencias Multilocus , Alimentos Marinos/microbiología , Análisis de Secuencia de ADN , Verduras/microbiología , Virulencia/genética
6.
Appl Environ Microbiol ; 80(8): 2372-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487545

RESUMEN

Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.


Asunto(s)
Ecosistema , Agua de Mar , Mariscos/microbiología , Vibrionaceae/aislamiento & purificación , Animales , Análisis por Conglomerados , Italia , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Vibrionaceae/clasificación , Vibrionaceae/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230071, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497257

RESUMEN

Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Interacciones Microbiota-Huesped , Metagenómica
8.
Antonie Van Leeuwenhoek ; 103(5): 1149-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23444039

RESUMEN

Lactic acid bacteria (LAB) are widely used in the food industry. Pediococcus spp. belong to the LAB group and include several species that are essential for the quality of fermented food. Pediococcus pentosaceus is the species that is most frequently isolated from fermented food and beverages but its uncontrolled growth during food fermentation processes can contribute to undesired flavours. Hence, the characterisation of these bacteria at the strain level is of great importance for the quality of fermented products. Despite their importance, misidentification at the species level is common for members of the genus Pediococcus. To clarify the taxonomic relationships among strains, a multilocus sequencing approach was developed for the characterisation of a collection of 29 field strains, 1 type strain and 1 reference strain of P. pentosaceus isolated from food. These strains were also tested for several phenotypic properties of technological interest and for the production of bacteriocins. The chromosomal operon involved in the synthesis of the bacteriocin penocin was also investigated. The present study enabled a good genomic characterisation, identifying 17 sequence types, with an overview of phenotypic characteristics related to different technological abilities, and also provides a thorough characterisation of the operon involved in penocin production.


Asunto(s)
Bacteriocinas/metabolismo , Vías Biosintéticas/genética , Microbiología de Alimentos , Operón , Pediococcus/clasificación , Pediococcus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Bacteriocinas/genética , Análisis por Conglomerados , Genotipo , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Pediococcus/genética , Pediococcus/metabolismo , Filogenia , Análisis de Secuencia de ADN
9.
Sci Rep ; 13(1): 11981, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488173

RESUMEN

Animals and their gut microbes mutually benefit their health. Nutrition plays a central role in this, directly influencing both host and microbial fitness and the nature of their interactions. This makes nutritional symbioses a complex and dynamic tri-system of diet-microbiota-host. Despite recent discoveries on this field, full control over the interplay among these partners is challenging and hinders the resolution of fundamental questions, such as how to parse the gut microbes' effect as raw nutrition or as symbiotic partners? To tackle this, we made use of the well-characterized Drosophila melanogaster/Lactiplantibacillus plantarum experimental model of nutritional symbiosis to generate a quantitative framework of gut microbes' effect on the host. By coupling experimental assays and Random Forest analysis, we show that the beneficial effect of L. plantarum strains primarily results from the active relationship as symbionts rather than raw nutrients, regardless of the bacterial strain. Metabolomic analysis of both active and inactive bacterial cells further demonstrated the crucial role of the production of beneficial bacterial metabolites, such as N-acetylated-amino-acids, as result of active bacterial growth and function. Altogether, our results provide a ranking and quantification of the main bacterial features contributing to sustain animal growth. We demonstrate that bacterial activity is the predominant and necessary variable involved in bacteria-mediated benefit, followed by strain-specific properties and the nutritional potential of the bacterial cells. This contributes to elucidate the role of beneficial bacteria and probiotics, creating a broad quantitative framework for host-gut microbiome that can be expanded to other model systems.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Drosophila melanogaster/microbiología , Bacterias , Nutrientes , Simbiosis
10.
Mol Oral Microbiol ; 38(3): 189-197, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36502499

RESUMEN

BACKGROUND: Dental calculus is the result of dental plaque mineralization, originating from the tooth-associated bacterial biofilm. Recent evidence revealed that the dental calculus microbiome has a more complex composition than previously considered, including an unstructured mix of both aerobes and anaerobes bacteria. Actually, we lack information about the influence of host lifestyle factors, such as diet and health on this highly biodiverse ecosystem. Here, we provide a pilot study investigating dental calculus microbial biodiversity and its relation with the host diet. METHODS: We collected 40 dental calculus samples during routine dental inspection; deoxyribonucleic acid was extracted and analyzed through 16S amplicon sequencing, while dietary information was retrieved through a questionnaire. Associations between diet and oral bacteria taxonomy and functional pathways were statistically tested. RESULTS: Overall, microbiome composition was dominated by 10 phyla and 39 bacterial genera, which were differently distributed among samples. Cluster analysis revealed four main groups based on the taxonomic profile and two groups based on functional pathways. Each taxonomic cluster was dominated by different microbial biomarkers: Streptococcus, Rothia, Tannerella, Lautropia, and Fusobacterium. Bacteria genera and pathways were also associated with specific dietary elements, especially vegetable and fruit intake suggesting an overall effect of diet on dental calculus microbiome. CONCLUSIONS: The present study demonstrates that there exists an inter-variability in the microbial composition of dental calculus among individuals of a rather homogeneous population. Furthermore, the observed biodiversity and microbial functions can find an association with specific dietary habits, such as a high-fiber diet or a protein-rich diet.


Asunto(s)
Microbiota , Diente , Humanos , Cálculos Dentales/microbiología , Proyectos Piloto , Ingestión de Alimentos , Bacterias/genética , ARN Ribosómico 16S/genética
11.
Mar Pollut Bull ; 193: 115192, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37364338

RESUMEN

Extreme events like Marine Heatwaves (MHWs) are becoming more intense, severe, and frequent, threatening benthic communities, specifically bivalves. However, the consequences of non-lethal MHWs on animals are still poorly understood. Here, we exposed the Manila clam Ruditapes philippinarum to non-lethal MHW for 30 days and provided an integrative view of its effects. Our result indicated that albeit non-lethal, MHW reduced clam's energy reserves (by reducing their hepato-somatic index), triggered antioxidant defenses (particularly in males), impaired reproduction (via the production of smaller oocytes in females), triggered dysbiosis in the digestive gland microbiota and altered animals' behaviour (by impacting their burying capacity) and filtration rate. Such effects were seen also at RNA-seq (i.e. many down-regulated genes belonged to reproduction) and metabolome level. Interestingly, negative effects were more pronounced in males than in females. Our results show that MHWs influence animal physiology at multiple levels, likely impacting its fitness and its ecosystem services.


Asunto(s)
Bivalvos , Ecosistema , Animales , Femenino , Masculino , Disbiosis , Bivalvos/fisiología , Alimentos Marinos , Reproducción
12.
iScience ; 25(6): 104357, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601912

RESUMEN

Commensal bacteria are known to promote host growth. Such effect partly relies on the capacity of microbes to regulate the host's transcriptional response. However, these evidences mainly come from comparing the transcriptional response caused by commensal bacteria with that of axenic animals, making it difficult to identify the animal genes that are specifically regulated by beneficial microbes. Here, we employ Drosophila melanogaster associated with Lactiplantibacillus plantarum to understand the host genetic pathways regulated by beneficial bacteria and leading to improved host growth. We show that microbial benefit to the host relies on the downregulation of peptidoglycan-recognition proteins. Specifically, we report that bacterial proliferation triggers the lower expression of PGRP-SC1 in larval midgut, which ultimately leads to improved host growth and development. Our study helps elucidate the mechanisms underlying the beneficial effect exerted by commensal bacteria, defining the role of immune effectors in the relationship between Drosophila and its gut microbes.

13.
Nat Commun ; 13(1): 6927, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414613

RESUMEN

The human microbiome has recently become a valuable source of information about host life and health. To date little is known about how it may have evolved during key phases along our history, such as the Neolithic transition towards agriculture. Here, we shed light on the evolution experienced by the oral microbiome during this transition, comparing Palaeolithic hunter-gatherers with Neolithic and Copper Age farmers that populated a same restricted area in Italy. We integrate the analysis of 76 dental calculus oral microbiomes with the dietary information derived from the identification of embedded plant remains. We detect a stronger deviation from the hunter-gatherer microbiome composition in the last part of the Neolithic, while to a lesser extent in the early phases of the transition. Our findings demonstrate that the introduction of agriculture affected host microbiome, supporting the hypothesis of a gradual transition within the investigated populations.


Asunto(s)
Agricultura , Microbiota , Humanos , Dieta , Agricultores , Italia
14.
Appl Environ Microbiol ; 77(14): 4986-5000, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21642403

RESUMEN

The genus Aeromonas has been described as comprising several species associated with the aquatic environment, which represents their principal reservoir. Aeromonas spp. are commonly isolated from diseased and healthy fish, but the involvement of such bacteria in human infection and gastroenteritis has frequently been reported. The primary challenge in establishing an unequivocal link between the Aeromonas genus and pathogenesis in humans is the extremely complicated taxonomy. With the aim of clarifying taxonomic relationships among the strains and phenotypes, a multilocus sequencing approach was developed and applied to characterize 23 type and reference strains of Aeromonas spp. and a collection of 77 field strains isolated from fish, crustaceans, and mollusks. All strains were also screened for putative determinants of virulence by PCR (ast, ahh1, act, asa1, eno, ascV, and aexT) and the production of acylated homoserine lactones (AHLs). In addition, the phenotypic fingerprinting obtained from 29 biochemical tests was submitted to the nonparametric combination (NPC) test methodology to define the statistical differences among the identified genetic clusters. Multilocus sequence typing (MLST) achieved precise strain genotyping, and the phylogenetic analysis of concatenated sequences delineated the relationship among the taxa belonging to the genus Aeromonas, providing a powerful tool for outbreak traceability, host range diffusion, and ecological studies. The NPC test showed the feasibility of phenotypic differentiation among the majority of the MLST clusters by using a selection of tests or the entire biochemical fingerprinting. A Web-based MLST sequence database (http://pubmlst.org/aeromonas) specific for the Aeromonas genus was developed and implemented with all the results.


Asunto(s)
Aeromonas/aislamiento & purificación , ADN Bacteriano/análisis , Factores de Virulencia/genética , Acil-Butirolactonas/metabolismo , Aeromonas/clasificación , Aeromonas/genética , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Biodiversidad , Genotipo , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Mapeo Nucleótido , Fenotipo , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
15.
Biotechnol J ; 14(3): e1700583, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30156038

RESUMEN

Lactic-acid bacteria such as Lactobacillus plantarum are commonly used for fermenting foods and as probiotics, where increasingly sophisticated genome-editing tools are employed to elucidate and enhance these microbes' beneficial properties. The most advanced tools to date utilize an oligonucleotide or double-stranded DNA donor for recombineering and Cas9 for targeted DNA cleavage. As the associated methods are often developed in isolation for one strain, it remains unclear how different Cas9-based editing methods compare across strains. Here, this work directly compares two methods in different strains of L. plantarum: one utilizing a plasmid-encoded recombineering template and another utilizing an oligonucleotide donor and an inducible DNA recombinase. This comparison reveals one instance in which only the recombineering-template method generates desired edits and another instance in which only the oligo method generates desired edits. It is further found that both methods exhibit highly variable success editing the same site across multiple L. plantarum strains. Finally, failure modes are identified for the recombineering-template method, including a consistent genomic deletion and reversion of a point mutation in the recombineering template. This study therefore highlights surprising differences for Cas9-mediated genome editing between methods and related strains, arguing for the need for multiple, distinct methods when performing CRISPR-based editing in bacteria.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Lactobacillus plantarum/genética , Edición Génica/métodos , Plásmidos/genética , Recombinasas/genética , Recombinación Genética/genética
16.
Food Res Int ; 124: 109-117, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31466629

RESUMEN

Tropical fruit and their industrial processing byproducts have been considered sources of probiotic Lactobacillus. Sixteen tropical fruit-derived Lactobacillus strains were assessed for growth-promoting effects using a host-commensal nutrient scarcity model with Drosophila melanogaster (Dm). Two Lactobacillus strains (L. plantarum 49 and L. plantarum 201) presenting the most significant effects (p ≤ .005) on Dm growth were selected and evaluated for their safety and beneficial effects in adult male Wistar rats during 28 days of administration of 9 log CFU/day, followed by 14 days of wash-out. Daily administration of L. plantarum 49 and L. plantarum 201 did not affect (p > .05) food intake or morphometric parameters. Both strains were associated with reduction (p ≤ .05) in blood glucose levels after 28 days of administration and after wash-out period; glucose levels remained reduced only in the group that received L. plantarum 49. Both strains were able to reduce (p ≤ .05) total cholesterol levels after 14 days of administration; after the wash-out period these levels remained reduced only in the group that received L. plantarum 201. L. plantarum 49 and L. plantarum 201 were detected in the intestine and did not cause alteration or translocate to spleen, kidneys or liver during the experimental or wash-out period. These results indicate that L. plantarum 49 and L. plantarum 201 present potential for use as probiotics with intrinsic abilities to modulate biochemical parameters of interest for the management of metabolic diseases.


Asunto(s)
Glucemia/efectos de los fármacos , Colesterol/sangre , Frutas/microbiología , Lactobacillus plantarum/fisiología , Probióticos/farmacología , Animales , Drosophila melanogaster , Heces/microbiología , Lactobacillus plantarum/aislamiento & purificación , Hígado/microbiología , Masculino , Ratas , Ratas Wistar , Bazo/microbiología
17.
Cell Host Microbe ; 24(1): 109-119.e6, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30008290

RESUMEN

Animal-microbe facultative symbioses play a fundamental role in ecosystem and organismal health. Yet, due to the flexible nature of their association, the selection pressures that act on animals and their facultative symbionts remain elusive. Here we apply experimental evolution to Drosophila melanogaster associated with its growth-promoting symbiont Lactobacillus plantarum, representing a well-established model of facultative symbiosis. We find that the diet of the host, rather than the host itself, is a predominant driving force in the evolution of this symbiosis. Furthermore, we identify a mechanism resulting from the bacterium's adaptation to the diet, which confers growth benefits to the colonized host. Our study reveals that bacterial adaptation to the host's diet may be the foremost step in determining the evolutionary course of a facultative animal-microbe symbiosis.


Asunto(s)
Adaptación Fisiológica , Drosophila melanogaster/microbiología , Evolución Molecular , Interacciones Microbiota-Huesped , Lactobacillus plantarum/genética , Simbiosis , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glutamina/análogos & derivados , Glutamina/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Larva/microbiología , Microbiota , Mutación
19.
FEMS Microbiol Rev ; 41(Supp_1): S27-S48, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673043

RESUMEN

Lactobacillus species are found in nutrient-rich habitats associated with food, feed, plants, animals and humans. Due to their economic importance, the metabolism, genetics and phylogeny of lactobacilli have been extensively studied. However, past research primarily examined lactobacilli in experimental settings abstracted from any natural history, and the ecological context in which these bacteria exist and evolve has received less attention. In this review, we synthesize phylogenetic, genomic and metabolic metadata of the Lactobacillus genus with findings from fine-scale phylogenetic and functional analyses of representative species to elucidate the evolution and natural history of its members. The available evidence indicates a high level of niche conservatism within the well-supported phylogenetic groups within the genus, with lifestyles ranging from free-living to strictly symbiotic. The findings are consistent with a model in which host-adapted Lactobacillus lineages evolved from free-living ancestors, with present-day species displaying substantial variations in terms of the reliance on environmental niches and the degree of host specificity. This model can provide a framework for the elucidation of the natural and evolutionary history of Lactobacillus species and valuable information to improve the use of this important genus in industrial and therapeutic applications.


Asunto(s)
Especificidad del Huésped/fisiología , Lactobacillus , Simbiosis/fisiología , Anaerobiosis/fisiología , Fermentación/fisiología , Genoma Bacteriano/genética , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/metabolismo , Oxígeno/metabolismo , Filogenia
20.
Nat Microbiol ; 2(12): 1635-1647, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993620

RESUMEN

The microbial environment influences animal physiology. However, the underlying molecular mechanisms of such functional interactions are largely undefined. Previously, we showed that during chronic undernutrition, strains of Lactobacillus plantarum, a major commensal partner of Drosophila, promote host juvenile growth and maturation partly through enhanced expression of intestinal peptidases. By screening a transposon insertion library of Lactobacillus plantarum in gnotobiotic Drosophila larvae, we identify a bacterial cell-wall-modifying machinery encoded by the pbpX2-dlt operon that is critical to enhance host digestive capabilities and promote animal growth and maturation. Deletion of this operon leads to bacterial cell wall alteration with a complete loss of D-alanylation of teichoic acids. We show that L. plantarum cell walls bearing D-alanylated teichoic acids are directly sensed by Drosophila enterocytes to ensure optimal intestinal peptidase expression and activity, juvenile growth and maturation during chronic undernutrition. We thus conclude that besides peptidoglycan, teichoic acid modifications participate in the host-commensal bacteria molecular dialogue occurring in the intestine.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/microbiología , Lactobacillus plantarum/metabolismo , Desnutrición/metabolismo , Simbiosis , Ácidos Teicoicos/metabolismo , Alanina/metabolismo , Animales , Fenómenos Biológicos , Pared Celular/metabolismo , Drosophila/genética , Genes Bacterianos/genética , Lactobacillus plantarum/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/microbiología , Microbiota/fisiología , Mutagénesis , Peptidoglicano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA