Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Microbiol ; 116(1): 329-342, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660879

RESUMEN

The integrity of the cell envelope of E. coli relies on the concerted activity of multi-protein machineries that synthesize the peptidoglycan (PG) and the outer membrane (OM). Our previous work found that the depletion of lipopolysaccharide (LPS) export to the OM induces an essential PG remodeling process involving LD-transpeptidases (LDTs), the glycosyltransferase function of PBP1B and the carboxypeptidase PBP6a. Consequently, cells with defective OM biogenesis lyse if they lack any of these PG enzymes. Here we report that the morphological defects, and lysis associated with a ldtF mutant with impaired LPS transport, are alleviated by the loss of the predicted OM-anchored lipoprotein ActS (formerly YgeR). We show that ActS is an inactive member of LytM-type peptidoglycan endopeptidases due to a degenerated catalytic domain. ActS is capable of activating all three main periplasmic peptidoglycan amidases, AmiA, AmiB, and AmiC, which were previously reported to be activated only by EnvC and/or NlpD. Our data also suggest that in vivo ActS preferentially activates AmiC and that its function is linked to cell envelope stress.


Asunto(s)
Membrana Externa Bacteriana/fisiología , Carboxipeptidasas/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Carboxipeptidasas/genética , Membrana Celular/fisiología , Pared Celular/metabolismo , Endopeptidasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Lipopolisacáridos/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Plásmidos/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Estrés Fisiológico/fisiología
2.
Proc Natl Acad Sci U S A ; 115(42): 10786-10791, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30275297

RESUMEN

The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4-3 cross-links in PG and are inhibited by ß-lactam antibiotics. Some clinical isolates and laboratory strains of Enterococcus faecium and Escherichia coli achieve high-level ß-lactam resistance by utilizing ß-lactam-insensitive LD-transpeptidases (LDTs) to produce exclusively 3-3 cross-links in PG, bypassing the PBPs. In E. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizes E. coli cells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3-3 cross-links in PG and displayed reduced covalent attachment of Braun's lipoprotein and reduced incorporation of a fluorescent d-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin in E. coli and E. faecium strains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated ß-lactam resistance.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Cobre/farmacología , Enterococcus faecium/enzimología , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Resistencia betalactámica/efectos de los fármacos , Antibacterianos/farmacología , Pared Celular/química , Pared Celular/metabolismo , Enterococcus faecium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Especificidad por Sustrato , Oligoelementos/farmacología , beta-Lactamas/farmacología
3.
Subcell Biochem ; 92: 9-37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214983

RESUMEN

Gram-negative bacteria have an outer membrane that is positioned at the frontline of the cell's interaction with the environment and that serves as a barrier against noxious molecules including many antibiotics. This protective function mainly relies on lipopolysaccharide, a complex glycolipid located in the outer leaflet of the outer membrane. In this chapter we will first summarize lipopolysaccharide structure, functions and biosynthetic pathway and then we will discuss how it is transported and assembled to the cell surface. This is a remarkably complex process, as amphipathic lipopolysaccharide molecules must traverse three different cellular compartments to reach their final destination.


Asunto(s)
Membrana Celular/metabolismo , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/metabolismo , Transporte Biológico
4.
J Bacteriol ; 200(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29109183

RESUMEN

In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane (OM), preventing the entry of toxic molecules, such as detergents and antibiotics. LPS is transported from the inner membrane (IM) to the OM by the Lpt multiprotein machinery. Defects in LPS transport compromise LPS assembly at the OM and result in increased antibiotic sensitivity. LptA is a key component of the Lpt machine that interacts with the IM protein LptC and chaperones LPS through the periplasm. We report here the construction of lptA41, a quadruple mutant in four conserved amino acids potentially involved in LPS or LptC binding. Although viable, the mutant displays increased sensitivity to several antibiotics (bacitracin, rifampin, and novobiocin) and the detergent SDS, suggesting that lptA41 affects LPS transport. Indeed, lptA41 is defective in Lpt complex assembly, and its lipid A carries modifications diagnostic of LPS transport defects. We also selected and characterized two phenotypic bacitracin-resistant suppressors of lptA41 One mutant, in which only bacitracin sensitivity is suppressed, harbors a small in-frame deletion in mlaA, which codes for an OM lipoprotein involved in maintaining OM asymmetry by reducing accumulation of phospholipids in the outer leaflet. The other mutant, in which bacitracin, rifampin, and SDS sensitivity is suppressed, harbors an additional amino acid substitution in LptA41 and a nonsense mutation in opgH, encoding a glycosyltransferase involved in periplasmic membrane-derived oligosaccharide synthesis. Characterization of the suppressor mutants highlights different strategies adopted by the cell to overcome OM defects caused by impaired LPS transport.IMPORTANCE Lipopolysaccharide (LPS) is the major constituent of the outer membrane (OM) of most Gram-negative bacteria, forming a barrier against antibiotics. LPS is synthesized at the inner membrane (IM), transported across the periplasm, and assembled at the OM by the multiprotein Lpt complex. LptA is the periplasmic component of the Lpt complex, which bridges IM and OM and ferries LPS across the periplasm. How the cell coordinates the processes involved in OM biogenesis is not completely understood. We generated a mutant partially defective in lptA that exhibited increased sensitivity to antibiotics and selected for suppressors of the mutant. The analysis of two independent suppressors revealed different strategies adopted by the cell to overcome defects in LPS biogenesis.


Asunto(s)
Proteínas Portadoras/genética , Permeabilidad de la Membrana Celular , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lipopolisacáridos/metabolismo , Supresión Genética , Sustitución de Aminoácidos , Bacitracina/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/genética , Lípido A/metabolismo , Proteínas de la Membrana/metabolismo , Rifampin/farmacología , Dodecil Sulfato de Sodio/farmacología
5.
J Biol Chem ; 292(44): 17981-17990, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28878019

RESUMEN

The outer membrane (OM) of Gram-negative is a unique lipid bilayer containing LPS in its outer leaflet. Because of the presence of amphipathic LPS molecules, the OM behaves as an effective permeability barrier that makes Gram-negative bacteria inherently resistant to many antibiotics. This review focuses on LPS biogenesis and discusses recent advances that have contributed to our understanding of how this complex molecule is transported across the cellular envelope and is assembled at the OM outer leaflet. Clearly, this knowledge represents an important platform for the development of novel therapeutic options to manage Gram-negative infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Modelos Biológicos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transporte Biológico , Conformación de Carbohidratos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Conformación Proteica
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1451-1460, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27760389

RESUMEN

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Lipogénesis , Lipopolisacáridos/biosíntesis , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Transporte Biológico , Lipopolisacáridos/química , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
7.
J Bacteriol ; 198(16): 2192-203, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27246575

RESUMEN

UNLABELLED: The assembly of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) requires the transenvelope Lpt (lipopolysaccharide transport) complex, made in Escherichia coli of seven essential proteins located in the inner membrane (IM) (LptBCFG), periplasm (LptA), and OM (LptDE). At the IM, LptBFG constitute an unusual ATP binding cassette (ABC) transporter, composed by the transmembrane LptFG proteins and the cytoplasmic LptB ATPase, which is thought to extract LPS from the IM and to provide the energy for its export across the periplasm to the cell surface. LptC is a small IM bitopic protein that binds to LptBFG and recruits LptA via its N- and C-terminal regions, and its role in LPS export is not completely understood. Here, we show that the expression level of lptB is a critical factor for suppressing lethality of deletions in the C-terminal region of LptC and the functioning of a hybrid Lpt machinery that carries Pa-LptC, the highly divergent LptC orthologue from Pseudomonas aeruginosa We found that LptB overexpression stabilizes C-terminally truncated LptC mutant proteins, thereby allowing the formation of a sufficient amount of stable IM complexes to support growth. Moreover, the LptB level seems also critical for the assembly of IM complexes carrying Pa-LptC which is otherwise defective in interactions with the E. coli LptFG components. Overall, our data suggest that LptB and LptC functionally interact and support a model whereby LptB plays a key role in the assembly of the Lpt machinery. IMPORTANCE: The asymmetric outer membrane (OM) of Gram-negative bacteria contains in its outer leaflet an unusual glycolipid, the lipopolysaccharide (LPS). LPS largely contributes to the peculiar permeability barrier properties of the OM that prevent the entry of many antibiotics, thus making Gram-negative pathogens difficult to treat. In Escherichia coli the LPS transporter (the Lpt machine) is made of seven essential proteins (LptABCDEFG) that form a transenvelope complex. Here, we show that increased expression of the membrane-associated ABC protein LptB can suppress defects of LptC, which participates in the formation of the periplasmic bridge. This reveals functional interactions between these two components and supports a role of LptB in the assembly of the Lpt machine.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Transporte Biológico/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipopolisacáridos/genética , Proteínas de la Membrana/genética , Plásmidos
8.
Biochim Biophys Acta ; 1854(10 Pt A): 1451-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26123264

RESUMEN

Lipopolysaccharide (LPS) is an essential glycolipid of the outer membrane (OM) of Gram-negative bacteria with a tripartite structure: lipid A, oligosaccharide core and O antigen. Seven essential LPS-transport proteins (LptABCDEFG) move LPS to the cell surface. Lpt proteins are linked by structural homology, featuring a ß-jellyroll domain that mediates protein-protein interactions and LPS binding. Analysis of LptA-LPS interaction by fluorescence spectroscopy is used here to evaluate the contribution of each LPS moiety in protein-ligand interactions, comparing the wild-type (wt) protein to the I36D mutant. In addition to a crucial role of lipid A, an unexpected contribution emerges for the core region in recognition and binding of Lpt proteins.


Asunto(s)
Proteínas Portadoras/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/química , Lipopolisacáridos/química , Mutación , Proteínas Recombinantes de Fusión/química , Sustitución de Aminoácidos , Naftalenosulfonatos de Anilina , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Transporte Biológico , Secuencia de Carbohidratos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Escherichia coli K12/química , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Isoleucina/química , Isoleucina/metabolismo , Ligandos , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia
9.
J Bacteriol ; 195(5): 1100-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292770

RESUMEN

Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components.


Asunto(s)
Escherichia coli/citología , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Estructura Terciaria de Proteína
10.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119406, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473551

RESUMEN

The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Lipopolisacáridos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular
11.
Methods Mol Biol ; 2548: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36151496

RESUMEN

Multiprotein complexes are important machineries that organize a large number of different proteins into functional units. Studying protein-protein interactions in the complexes, rather than individual proteins, is a fundamental step to gaining functional insights into a biological process. Here, we present the sequential affinity purification and coimmunoprecipitation system that was applied to enable the efficient purification of all the proteins that compose the Lpt system complex in Escherichia coli and their identification by western blotting and mass spectrometry (MS).


Asunto(s)
Escherichia coli , Proteínas , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunoprecipitación , Complejos Multiproteicos/metabolismo , Proteínas/química
12.
J Bacteriol ; 193(5): 1042-53, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21169485

RESUMEN

Lipopolysaccharide (LPS) is a major glycolipid present in the outer membrane (OM) of Gram-negative bacteria. The peculiar permeability barrier of the OM is due to the presence of LPS at the outer leaflet of this membrane that prevents many toxic compounds from entering the cell. In Escherichia coli LPS synthesized inside the cell is first translocated over the inner membrane (IM) by the essential MsbA flippase; then, seven essential Lpt proteins located in the IM (LptBCDF), in the periplasm (LptA), and in the OM (LptDE) are responsible for LPS transport across the periplasmic space and its assembly at the cell surface. The Lpt proteins constitute a transenvelope complex spanning IM and OM that appears to operate as a single device. We show here that in vivo LptA and LptC physically interact, forming a stable complex and, based on the analysis of loss-of-function mutations in LptC, we suggest that the C-terminal region of LptC is implicated in LptA binding. Moreover, we show that defects in Lpt components of either IM or OM result in LptA degradation; thus, LptA abundance in the cell appears to be a marker of properly bridged IM and OM. Collectively, our data support the recently proposed transenvelope model for LPS transport.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de la Membrana/genética
13.
Front Mol Biosci ; 8: 758228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004843

RESUMEN

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.

14.
mBio ; 12(3)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947763

RESUMEN

Gram-negative bacteria have a unique cell envelope with a lipopolysaccharide-containing outer membrane that is tightly connected to a thin layer of peptidoglycan. The tight connection between the outer membrane and peptidoglycan is needed to maintain the outer membrane as an impermeable barrier for many toxic molecules and antibiotics. Enterobacteriaceae such as Escherichia coli covalently attach the abundant outer membrane-anchored lipoprotein Lpp (Braun's lipoprotein) to tripeptides in peptidoglycan, mediated by the transpeptidases LdtA, LdtB, and LdtC. LdtD and LdtE are members of the same family of ld-transpeptidases but they catalyze a different reaction, the formation of 3-3 cross-links in the peptidoglycan. The function of the sixth homologue in E. coli, LdtF, remains unclear, although it has been shown to become essential in cells with inhibited lipopolysaccharide export to the outer membrane. We now show that LdtF hydrolyzes the Lpp-peptidoglycan linkage, detaching Lpp from peptidoglycan, and have renamed LdtF to peptidoglycan meso-diaminopimelic acid protein amidase A (DpaA). We show that the detachment of Lpp from peptidoglycan is beneficial for the cell under certain stress conditions and that the deletion of dpaA allows frequent transposon inactivation in the lapB (yciM) gene, whose product downregulates lipopolysaccharide biosynthesis. DpaA-like proteins have characteristic sequence motifs and are present in many Gram-negative bacteria, of which some have no Lpp, raising the possibility that DpaA has other substrates in these species. Overall, our data show that the Lpp-peptidoglycan linkage in E. coli is more dynamic than previously appreciated.IMPORTANCE Gram-negative bacteria have a complex cell envelope with two membranes and a periplasm containing the peptidoglycan layer. The outer membrane is firmly connected to the peptidoglycan by highly abundant proteins. The outer membrane-anchored Braun's lipoprotein (Lpp) is the most abundant protein in E. coli, and about one-third of the Lpp molecules become covalently attached to tripeptides in peptidoglycan. The attachment of Lpp to peptidoglycan stabilizes the cell envelope and is crucial for the outer membrane to function as a permeability barrier for a range of toxic molecules and antibiotics. So far, the attachment of Lpp to peptidoglycan has been considered to be irreversible. We have now identified an amidase, DpaA, which is capable of detaching Lpp from peptidoglycan, and we show that the detachment of Lpp is important under certain stress conditions. DpaA-like proteins are present in many Gram-negative bacteria and may have different substrates in these species.


Asunto(s)
Amidohidrolasas/metabolismo , Ácido Diaminopimélico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Amidohidrolasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/clasificación
15.
Cells ; 9(11)2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167383

RESUMEN

BACKGROUND: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. METHODS: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. RESULTS: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. CONCLUSION: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Antígenos Bacterianos/inmunología , Modelos Biológicos , Péptidos/metabolismo , Proteoma/metabolismo
16.
Front Microbiol ; 11: 909, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477309

RESUMEN

The outer membrane (OM) of Gram-negative bacteria is a highly selective permeability barrier due to its asymmetric structure with lipopolysaccharide (LPS) in the outer leaflet. In Escherichia coli, LPS is transported to the cell surface by the LPS transport (Lpt) system composed of seven essential proteins forming a transenvelope bridge. Transport is powered by the ABC transporter LptB2FGC, which extracts LPS from the inner membrane (IM) and transfers it, through LptC protein, to the periplasmic protein LptA. Then, LptA delivers LPS to the OM LptDE translocon for final assembly at the cell surface. The Lpt protein machinery operates as a single device, since depletion of any component leads to the accumulation of a modified LPS decorated with repeating units of colanic acid at the IM outer leaflet. Moreover, correct machine assembly is essential for LPS transit and disruption of the Lpt complex results in LptA degradation. Due to its vital role in cell physiology, the Lpt system represents a good target for antimicrobial drugs. Thanatin is a naturally occurring antimicrobial peptide reported to cause defects in membrane assembly and demonstrated in vitro to bind to the N-terminal ß-strand of LptA. Since this region is involved in both LptA dimerization and interaction with LptC, we wanted to elucidate the mechanism of inhibition of thanatin and discriminate whether its antibacterial effect is exerted by the disruption of the interaction of LptA with itself or with LptC. For this purpose, we here implemented the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system to probe in vivo the Lpt interactome in the periplasm. With this system, we found that thanatin targets both LptC-LptA and LptA-LptA interactions, with a greater inhibitory effect on the former. We confirmed in vitro the disruption of LptC-LptA interaction using two different biophysical techniques. Finally, we observed that in cells treated with thanatin, LptA undergoes degradation and LPS decorated with colanic acid accumulates. These data further support inhibition or disruption of Lpt complex assembly as the main killing mechanism of thanatin against Gram-negative bacteria.

17.
Res Microbiol ; 170(8): 366-373, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31376484

RESUMEN

The surface of the outer membrane of Gram-negative bacteria is covered by a tightly packed layer of lipopolysaccharide molecules which provide a barrier against many toxic compounds and antibiotics. Lipopolysaccharide, synthesized in the cytoplasm, is assembled in the periplasmic leaflet of the inner membrane where the intermembrane Lpt system mediates its transport to the cell surface. The first step of lipopolysaccharide transport is its extraction from the outer leaflet of inner membrane powered by the atypical LptB2FGC ABC transporter. Here we review latest advances leading to understanding at molecular level how lipopolysaccharide is transported irreversibly to the outer membrane.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Conformación Proteica
18.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723128

RESUMEN

Gram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show that Escherichia coli cells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCE In Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show that Escherichia coli cells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/fisiología , Viabilidad Microbiana , Peptidoglicano/metabolismo , Bacteriólisis , Transporte Biológico , Proteínas de Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidil Transferasas/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
19.
Virulence ; 9(1): 1718-1733, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30354941

RESUMEN

Lipopolysaccharide (LPS) is an essential structural component of the outer membrane (OM) of most Gram-negative bacteria. In the model organism Escherichia coli, LPS transport to the OM requires seven essential proteins (LptABCDEFG) that form a continuous bridge across the cell envelope. In Pseudomonas aeruginosa the recently-demonstrated essentiality of LptD and LptH, the P. aeruginosa LptA homologue, confirmed the crucial role of the Lpt system and, thus, of LPS in OM biogenesis in this species. Surprisingly, independent high-throughput transposon mutagenesis studies identified viable P. aeruginosa insertion mutants in the lptE gene, suggesting that it might be dispensable for bacterial growth. To test this hypothesis, we generated an lptE conditional mutant in P. aeruginosa PAO1. LptE depletion only slightly impairs P. aeruginosa growth in vitro. Conversely, LptE is important for cell envelope stability, antibiotic resistance and virulence in an insect model. Interestingly, the maturation and OM localization of LPS is only marginally affected in LptE-depleted cells, while the levels of the OM component LptD are strongly reduced. This suggests that P. aeruginosa LptE might not be directly involved in LPS transport, although it is clearly essential for the maturation and/or stability of LptD. While poor functionality of LptD caused by LptE depletion is somehow tolerated by P. aeruginosa, this has a high cost in terms of cell integrity, drug resistance and virulence, highlighting LptE function(s) as an interesting target to weaken P. aeruginosa defenses and reduce its infectivity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana Múltiple , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Animales , Antibacterianos/farmacología , Larva/microbiología , Modelos Moleculares , Mariposas Nocturnas/microbiología , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/genética
20.
ACS Chem Biol ; 13(8): 2106-2113, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29965728

RESUMEN

Lipopolysaccharides (LPS) are complex glycolipids forming the outside layer of Gram-negative bacteria. Their hydrophobic and heterogeneous nature greatly hampers their structural study in an environment similar to the bacterial surface. We have studied LPS purified from E. coli and pathogenic P. aeruginosa with long O-antigen polysaccharides assembled in solution as vesicles or elongated micelles. Solid-state NMR with magic-angle spinning permitted the identification of NMR signals arising from regions with different flexibilities in the LPS, from the lipid components to the O-antigen polysaccharides. Atomic scale data on the LPS enabled the study of the interaction of gentamicin antibiotic bound to P. aeruginosa LPS, for which we could confirm that a specific oligosaccharide is involved in the antibiotic binding. The possibility to study LPS alone and bound to a ligand when it is assembled in membrane-like structures opens great prospects for the investigation of proteins and antibiotics that specifically target such an important molecule at the surface of Gram-negative bacteria.


Asunto(s)
Escherichia coli/química , Lipopolisacáridos/química , Pseudomonas aeruginosa/química , Infecciones por Escherichia coli/microbiología , Humanos , Lípido A/análisis , Espectroscopía de Resonancia Magnética , Antígenos O/análisis , Oligosacáridos/análisis , Infecciones por Pseudomonas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA