Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(9): 1129-1137, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358998

RESUMEN

Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically recognize HLA class II molecules have never been identified. We investigated whether two major families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP molecules and NKp44 implicates HLA class II as a component of the innate immune response, much like HLA class I. It also provides a potential mechanism for the described associations between HLA-DP subtypes and several disease outcomes, including hepatitis B virus infection5-7, graft-versus-host disease8 and inflammatory bowel disease9,10.


Asunto(s)
Antígenos HLA-DP/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Línea Celular , Enfermedad Injerto contra Huésped/inmunología , Hepatitis B/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Células Jurkat
2.
Nat Immunol ; 17(9): 1067-74, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455421

RESUMEN

The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Receptores KIR3DS1/metabolismo , Citocinas/metabolismo , Citotoxicidad Inmunológica , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Evasión Inmune , Células Jurkat , Ligandos , Activación de Linfocitos , Cultivo Primario de Células , Receptores KIR3DS1/agonistas , Receptores KIR3DS1/genética , Latencia del Virus , Replicación Viral
3.
PLoS Pathog ; 18(6): e1010572, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749424

RESUMEN

Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Antivirales/metabolismo , Regulación hacia Abajo , Humanos , Células Asesinas Naturales , Ligandos , Receptores de Células Asesinas Naturales/metabolismo , Receptores Virales , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
4.
J Hepatol ; 75(2): 414-423, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33774059

RESUMEN

BACKGROUND & AIMS: Little is known about the composition of intrahepatic immune cells and their contribution to the pathogenesis of primary sclerosing cholangitis (PSC). Herein, we aimed to create an atlas of intrahepatic T cells and thereby perform an in-depth characterization of T cells in inflamed human liver. METHODS: Different single-cell RNA sequencing methods were combined with in silico analyses on intrahepatic and peripheral T cells from patients with PSC (n = 11) and healthy donors (HDs, n = 4). Multi-parameter flow cytometry and functional in vitro experiments were conducted on samples from patients with PSC (n = 24), controls with other liver diseases and HDs. RESULTS: We identified a population of intrahepatic naive-like CD4+ T cells, which was present in all liver diseases tested, but particularly expanded in PSC. This population had a transcriptome and T cell receptor repertoire similar to circulating naive T cells but expressed a set of genes associated with tissue residency. Their periductal location supported the concept of tissue-resident naive-like T cells in livers of patients with PSC. Trajectory inference suggested that these cells had the developmental propensity to acquire a T helper 17 (TH17) polarization state. Functional and chromatin accessibility experiments revealed that circulating naive T cells in patients with PSC were predisposed to polarize towards TH17 cells. CONCLUSION: We report the first atlas of intrahepatic T cells in PSC, which led to the identification of a previously unrecognized population of tissue-resident naive-like T cells in the inflamed human liver and to the finding that naive CD4+ T cells in PSC harbour the propensity to develop into TH17 cells. LAY SUMMARY: The composition of intrahepatic immune cells in primary sclerosing cholangitis (PSC) and their contribution to disease pathogenesis is widely unknown. We analysed intrahepatic T cells and identified a previously uncharacterized population of liver-resident CD4+ T cells which are expanded in the livers of patients with PSC compared to healthy liver tissue and other liver diseases. These cells are likely to contribute to the pathogenesis of PSC and could be targeted in novel therapeutic approaches.


Asunto(s)
Colangitis Esclerosante/fisiopatología , Hepatocitos/fisiología , Linfocitos T/fisiología , Colangitis Esclerosante/enzimología , Humanos , Hígado/patología , Hígado/fisiopatología , Secuenciación del Exoma/métodos
5.
Hepatology ; 72(4): 1310-1326, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090557

RESUMEN

BACKGROUND AND AIMS: T cells from patients with primary sclerosing cholangitis (PSC) show a prominent interleukin (IL)-17 response upon stimulation with bacteria or fungi, yet the reasons for this dominant T-helper 17 (Th17) response in PSC are not clear. Here, we analyzed the potential role of monocytes in microbial recognition and in skewing the T-cell response toward Th17. APPROACH AND RESULTS: Monocytes and T cells from blood and livers of PSC patients and controls were analyzed ex vivo and in vitro using transwell experiments with cholangiocytes. Cytokine production was measured using flow cytometry, enzyme-linked immunosorbent assay, RNA in situ hybridization, and quantitative real-time PCR. Genetic polymorphisms were obtained from ImmunoChip analysis. Following ex vivo stimulation with phorbol myristate acetate/ionomycin, PSC patients showed significantly increased numbers of IL-17A-producing peripheral blood CD4+ T cells compared to PBC patients and healthy controls, indicating increased Th17 differentiation in vivo. Upon stimulation with microbes, monocytes from PSC patients produced significantly more IL-1ß and IL-6, cytokines known to drive Th17 cell differentiation. Moreover, microbe-activated monocytes induced the secretion of Th17 and monocyte-recruiting chemokines chemokine (C-C motif) ligand (CCL)-20 and CCL-2 in human primary cholangiocytes. In livers of patients with PSC cirrhosis, CD14hiCD16int and CD14loCD16hi monocytes/macrophages were increased compared to alcoholic cirrhosis, and monocytes were found to be located around bile ducts. CONCLUSIONS: PSC patients show increased Th17 differentiation already in vivo. Microbe-stimulated monocytes drive Th17 differentiation in vitro and induce cholangiocytes to produce chemokines mediating recruitment of Th17 cells and more monocytes into portal tracts. Taken together, these results point to a pathogenic role of monocytes in patients with PSC.


Asunto(s)
Colangitis Esclerosante/inmunología , Monocitos/fisiología , Células Th17/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Adaptadoras de Señalización CARD/genética , Diferenciación Celular , Quimiocinas/biosíntesis , Femenino , Humanos , Interleucina-1beta/fisiología , Interleucinas/genética , Cirrosis Hepática/inmunología , Masculino , Persona de Mediana Edad , Adulto Joven
6.
Eur J Immunol ; 49(5): 758-769, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30785638

RESUMEN

The pathogenesis of primary sclerosing cholangitis (PSC), an autoimmune liver disease, remains unknown. The aim of this study was to characterize peripheral blood and intrahepatic NK cells from patients with PSC. Peripheral blood samples from patients with PSC, other autoimmune liver diseases, and from healthy control individuals were used, as well as liver tissues from PSC patients undergoing liver transplantation. Multiparameter flow cytometry showed that peripheral blood NK cells from PSC patients were significantly enriched for CCR7+ and CXCR3+ cells, and CCR7+ but not CXCR3+ cells were also significantly increased within intrahepatic NK cells. PSC patients undergoing liver transplantation furthermore had significantly higher plasma levels of the CCR7-ligand CCL21, and the CXCR3-ligands CXCL10 and CXCL11, and significantly higher levels of CCL21, but not CXCL10, were detected in liver tissues. CCR7+ and CXCR3+ NK cells from PSC patients exhibited significantly higher functional capacity in peripheral blood, but not liver tissues, consistent with chronic activation of these NK cells in the inflamed liver. These data show that PSC is characterized by intrahepatic CCL21 expression and accumulation of CCR7+ NK cells in the inflamed liver tissue.


Asunto(s)
Quimiocina CCL21/genética , Colangitis Esclerosante/etiología , Colangitis Esclerosante/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores CCR7/metabolismo , Biomarcadores , Quimiocina CCL21/metabolismo , Colangitis Esclerosante/patología , Susceptibilidad a Enfermedades , Expresión Génica , Humanos , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Recuento de Linfocitos , Especificidad de Órganos/genética , Receptores CXCR3/metabolismo
7.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375574

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) has evolved elaborate ways to evade immune cell recognition, including downregulation of classical HLA class I (HLA-I) from the surfaces of infected cells. Recent evidence identified HLA-E, a nonclassical HLA-I, as an important part of the antiviral immune response to HIV-1. Changes in HLA-E surface levels and peptide presentation can prompt both CD8+ T-cell and natural killer (NK) cell responses to viral infections. Previous studies reported unchanged or increased HLA-E levels on HIV-1-infected cells. Here, we examined HLA-E surface levels following infection of CD4+ T cells with primary HIV-1 strains and observed that a subset downregulated HLA-E. Two primary strains of HIV-1 that induced the strongest reduction in surface HLA-E expression were chosen for further testing. Expression of single Nef or Vpu proteins in a T-cell line, as well as tail swap experiments exchanging the cytoplasmic tail of HLA-A2 with that of HLA-E, demonstrated that Nef modulated HLA-E surface levels and targeted the cytoplasmic tail of HLA-E. Furthermore, infection of primary CD4+ T cells with HIV-1 mutants showed that a lack of functional Nef (and Vpu to some extent) impaired HLA-E downmodulation. Taken together, the results of this study demonstrate for the first time that HIV-1 can downregulate HLA-E surface levels on infected primary CD4+ T cells, potentially rendering them less vulnerable to CD8+ T-cell recognition but at increased risk of NKG2A+ NK cell killing.IMPORTANCE For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed that primary HIV-1 strains reduce HLA-C surface levels, whereas the cell line-adapted HIV-1 strain NL4-3 lacks this ability. Here, we demonstrate that infection with distinct primary HIV-1 strains results in significant downregulation of surface HLA-E levels. Given the increasing evidence for HLA-E as an important modulator of CD8+ T-cell and NKG2A+ NK cell functions, this finding has substantial implications for future immunomodulatory approaches aimed at harnessing cytotoxic cellular immunity against HIV.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Interacciones Huésped-Patógeno/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Biomarcadores , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Membrana Celular/metabolismo , Infecciones por VIH/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunofenotipificación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Antígenos HLA-E
8.
Gastroenterology ; 155(5): 1366-1371.e3, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30031767

RESUMEN

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer (NK) cells. Binding of KIR3DS1 to its recently discovered ligand, HLA-F, activates NK cells and has been associated with resolution of hepatitis C virus (HCV) infection. We investigated the mechanisms by which KIR3DS1 contributes to the antiviral immune response. Using cell culture systems, mice with humanized livers, and primary liver tissue from HCV-infected individuals, we found that the KIR3DS1 ligand HLA-F is up-regulated on HCV-infected cells, and that interactions between KIR3DS1 and HLA-F contribute to NK cell-mediated control of HCV. Strategies to promote interaction between KIR3DS1 and HLA-F might be developed for treatment of infectious diseases and cancer.


Asunto(s)
Hepacivirus/fisiología , Antígenos de Histocompatibilidad Clase I/fisiología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Receptores KIR3DS1/fisiología , Replicación Viral , Células Cultivadas , Hepatitis C/tratamiento farmacológico , Humanos
9.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29875244

RESUMEN

One unexplored aspect of HIV-1 genetic architecture is how codon choice influences population diversity and evolvability. Here we compared the levels of development of HIV-1 resistance to protease inhibitors (PIs) between wild-type (WT) virus and a synthetic virus (MAX) carrying a codon-pair-reengineered protease sequence including 38 (13%) synonymous mutations. The WT and MAX viruses showed indistinguishable replication in MT-4 cells or peripheral blood mononuclear cells (PBMCs). Both viruses were subjected to serial passages in MT-4 cells, with selective pressure from the PIs atazanavir (ATV) and darunavir (DRV). After 32 successive passages, both the WT and MAX viruses developed phenotypic resistance to PIs (50% inhibitory concentrations [IC50s] of 14.6 ± 5.3 and 21.2 ± 9 nM, respectively, for ATV and 5.9 ± 1.0 and 9.3 ± 1.9, respectively, for DRV). Ultradeep sequence clonal analysis revealed that both viruses harbored previously described mutations conferring resistance to ATV and DRV. However, the WT and MAX virus proteases showed different resistance variant repertoires, with the G16E and V77I substitutions observed only in the WT and the L33F, S37P, G48L, Q58E/K, and L89I substitutions detected only in the MAX virus. Remarkably, the G48L and L89I substitutions are rarely found in vivo in PI-treated patients. The MAX virus showed significantly higher nucleotide and amino acid diversity of the propagated viruses with and without PIs (P < 0.0001), suggesting a higher selective pressure for change in this recoded virus. Our results indicate that the HIV-1 protease position in sequence space delineates the evolution of its mutant spectrum. Nevertheless, the investigated synonymously recoded variant showed mutational robustness and evolvability similar to those of the WT virus.IMPORTANCE Large-scale synonymous recoding of virus genomes is a new tool for exploring various aspects of virus biology. Synonymous virus genome recoding can be used to investigate how a virus's position in sequence space defines its mutant spectrum, evolutionary trajectory, and pathogenesis. In this study, we evaluated how synonymous recoding of the human immunodeficiency virus type 1 (HIV-1) protease affects the development of protease inhibitor (PI) resistance. HIV-1 protease is a main target of current antiretroviral therapies. Our present results demonstrate that the wild-type (WT) virus and a virus with recoded protease exhibited different patterns of resistance mutations after PI treatment. Nevertheless, the developed PI resistance phenotypes were indistinguishable between the recoded virus and the WT virus, suggesting that the HIV-1 strain with synonymously recoded protease and the WT virus are equally robust and evolvable.


Asunto(s)
Farmacorresistencia Viral , Evolución Molecular , Proteasa del VIH/genética , VIH/efectos de los fármacos , VIH/fisiología , Mutación Missense , Mutación Silenciosa , Células Cultivadas , VIH/genética , Humanos , Linfocitos/virología , Nucleótidos/genética , Pase Seriado , Replicación Viral
10.
J Hepatol ; 65(2): 252-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27057987

RESUMEN

BACKGROUND & AIMS: Both natural killer (NK) cells and human leukocyte antigen (HLA)/killer cell immunoglobulin like receptor (KIR) interactions have been shown to play an important role in the control, clearance and progression of hepatitis C virus (HCV) disease. Here we aimed at elucidating the effects of viral peptides derived from HCV on HLA stabilization, changes in KIR binding and primary NK cell function. METHODS: Transporter for antigen presentation-deficient 722.221 cells stably transfected with HLA-C∗03:04 were used to screen 200 overlapping peptides, covering the non-structural protein 3 (NS3) and core protein of HCV genotype 1, for their ability to bind and stabilize HLA-C∗03:04. Binding of KIR2DL3 to the HLA-peptide complex was assessed using a KIR2DL3-IgG fusion construct. Primary NK cells were isolated from healthy donors to investigate the effects of identified peptides on KIR2DL3(+) NK cell function. RESULTS: Thirty-one peptides able to stabilize HLA-C∗03:04 were identified. One 9mer peptide, YIPLVGAPL, resulted in significantly higher KIR2DL3 binding to HLA-C∗03:04(+) 722.221 cells and suppression of primary KIR2DL3(+) NK cell function. Interestingly this sequence exhibited a high frequency of mutations in different HCV genotypes. These genotype-specific peptides showed lower HLA-C∗03:04 stabilization, decreased binding of the inhibitory KIR2DL3 and lower inhibition of NK cell function. CONCLUSIONS: Taken together we show that a viral peptide derived from the core protein of HCV genotype 1 binding to HLA-C∗03:04 results in a sequence-dependent engagement of the inhibitory NK cell receptor KIR2DL3, while the large majority of the remaining 30 HLA-C∗03:04 binding HCV core peptides did not. These data show that sequence variations within HCV can modulate NK cell function, providing potential pathways for viral escape. LAY SUMMARY: We identified a HCV peptide that dampens NK cell responses, and thereby possibly prevents killing of infected cells through this part of the innate immune system. This is facilitated via presentation of the viral peptide on HLA∗03:04 to the inhibitory KIR receptor KIR2DL3 on NK cells. Naturally occurring sequence mutations in the peptide alter these interactions making the inhibition less efficient.


Asunto(s)
Células Asesinas Naturales , Epítopos , Antígenos HLA-C , Hepatitis C , Humanos , Receptores KIR2DL3
11.
Retrovirology ; 10: 78, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23885919

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has a biased nucleotide composition different from human genes. This raises the question of how evolution has chosen the nucleotide sequence of HIV-1 that is observed today, or to what extent the actual encoding contributes to virus replication capacity, evolvability and pathogenesis. Here, we applied the previously described synthetic attenuated virus engineering (SAVE) approach to HIV-1. RESULTS: Using synonymous codon pairs, we rationally recoded and codon pair-optimized and deoptimized different moieties of the HIV-1 gag and pol genes. Deoptimized viruses had significantly lower viral replication capacity in MT-4 and peripheral blood mononuclear cells (PBMCs). Varying degrees of ex vivo attenuation were obtained, depending upon both the specific deoptimized region and the number of deoptimized codons. A protease optimized virus carrying 38 synonymous mutations was not attenuated and displayed a replication capacity similar to that of the wild-type virus in MT-4 cells and PBMCs. Although attenuation is based on several tens of nucleotide changes, deoptimized HIV-1 reverted to wild-type virulence after serial passages in MT-4 cells. Remarkably, no reversion was observed in the optimized virus. CONCLUSION: These data demonstrate that SAVE is a useful strategy to phenotypically affect the replicative properties of HIV-1.


Asunto(s)
Codón , VIH-1/fisiología , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética , Células Cultivadas , Análisis Mutacional de ADN , VIH-1/genética , Humanos , Leucocitos Mononucleares/virología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
12.
Front Immunol ; 14: 1117320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845105

RESUMEN

The crosstalk between NK cells and their surrounding environment is enabled through activating and inhibitory receptors, which tightly control NK cell activity. The co-inhibitory receptor TIGIT decreases NK cell cytotoxicity and is involved in NK cell exhaustion, but has also been associated with liver regeneration, highlighting that the contribution of human intrahepatic CD56bright NK cells in regulating tissue homeostasis remains incompletely understood. A targeted single-cell mRNA analysis revealed distinct transcriptional differences between matched human peripheral blood and intrahepatic CD56bright NK cells. Multiparameter flow cytometry identified a cluster of intrahepatic NK cells with overlapping high expression of CD56, CD69, CXCR6, TIGIT and CD96. Intrahepatic CD56bright NK cells also expressed significantly higher protein surface levels of TIGIT, and significantly lower levels of DNAM-1 compared to matched peripheral blood CD56bright NK cells. TIGIT+ CD56bright NK cells showed diminished degranulation and TNF-α production following stimulation. Co-incubation of peripheral blood CD56bright NK cells with human hepatoma cells or primary human hepatocyte organoids resulted in migration of NK cells into hepatocyte organoids and upregulation of TIGIT and downregulation of DNAM-1 expression, in line with the phenotype of intrahepatic CD56bright NK cells. Intrahepatic CD56bright NK cells represent a transcriptionally, phenotypically, and functionally distinct population of NK cells that expresses higher levels of TIGIT and lower levels of DNAM-1 than matched peripheral blood CD56bright NK cells. Increased expression of inhibitory receptors by NK cells within the liver environment can contribute to tissue homeostasis and reduction of liver inflammation.


Asunto(s)
Células Asesinas Naturales , Hígado , Humanos , Antígeno CD56/metabolismo , Células Asesinas Naturales/metabolismo , Hígado/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Citometría de Flujo
13.
Cell Mol Immunol ; 20(2): 201-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36600048

RESUMEN

Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.


Asunto(s)
Linfocitos T CD4-Positivos , Receptor de Muerte Celular Programada 1 , Linfocitos T Colaboradores-Inductores , Adulto , Niño , Humanos , Lactante , Linfocitos B , Receptores CXCR5 , Linfocitos T CD4-Positivos/inmunología
14.
Mucosal Immunol ; 16(4): 408-421, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37121384

RESUMEN

Early life is characterized by extraordinary challenges, including rapid tissue growth and immune adaptation to foreign antigens after birth. During this developmental stage, infants have an increased risk of immune-mediated diseases. Here, we demonstrate that tissue-resident, interleukin (IL)-13- and IL-4-producing group 2 innate lymphoid cells (ILC2s) are enriched in human infant intestines compared to adult intestines. Organoid systems were employed to assess the role of infant intestinal ILC2s in intestinal development and showed that IL-13 and IL-4 increased epithelial cell proliferation and skewed cell differentiation toward secretory cells. IL-13 furthermore upregulated the production of mediators of type-2 immunity by infant intestinal epithelial cells, including vascular endothelial growth factor-A and IL-26, a chemoattractant for eosinophils. In line with these in vitro findings increased numbers of eosinophils were detected in vivo in infant intestines. Taken together, ILC2s are enriched in infant intestines and can support intestinal development while inducing an epithelial secretory response associated with type 2 immune-mediated diseases.


Asunto(s)
Inmunidad Innata , Interleucina-13 , Adulto , Humanos , Lactante , Linfocitos , Factor A de Crecimiento Endotelial Vascular , Interleucina-4 , Intestinos , Interleucina-33 , Citocinas/metabolismo
15.
J Gen Virol ; 93(Pt 12): 2625-2634, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22933665

RESUMEN

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


Asunto(s)
Proteasa del VIH/genética , Proteasa del VIH/fisiología , VIH-1/genética , VIH-1/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Secuencia Conservada , ADN Viral/genética , Farmacorresistencia Viral/genética , Evolución Molecular , Variación Genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Humanos , Datos de Secuencia Molecular , Mutación , Filogenia , Virus Reordenados/genética , Virus Reordenados/fisiología , Homología de Secuencia de Aminoácido , Factores de Tiempo , Replicación Viral/genética , Replicación Viral/fisiología
16.
Front Immunol ; 11: 559576, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101277

RESUMEN

Natural killer (NK) cells are an important component of the innate immune system for the control of intracellular pathogens and cancer cells. NK cells demonstrate heterogeneous expression of inhibitory surface receptors. Signaling through these various receptors during NK cell development promotes functionality, referred to as NK cell education. Here we investigated the impact of education on NK cell metabolism through functional assessment of critical metabolic pathways and calcium signaling. Educated NK cells had an increased uptake of the metabolic substrates 2-NBDG, a fluorescent glucose analog, and BODIPY FL C16, a fluorescent palmitate, compared to uneducated NK cells. Comparison of NK cells educated via KIRs or NKG2A showed that NKG2A-educated NK cells were the main contributor to these differences in uptake of metabolites, and that NKG2A-educated NK cells were functionally more resilient in response to metabolic blockade of oxidative phosphorylation. Furthermore, NKG2A-educated NK cells exhibited higher peak calcium concentration following stimulation, indicating stronger signaling events taking place in these educated NK cells. These results demonstrate that cellular metabolism plays an important role in the functional differences observed between educated and uneducated NK cells, and show that NKG2A-educated NK cells remain more functionally competent than KIR-educated NK cells when oxidative phosphorylation is restricted. Understanding metabolic programming during NK cell education may unveil future targets to manipulate NK cell function for use in clinical settings, such as cancer therapies.


Asunto(s)
Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Receptores KIR/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , Señalización del Calcio , Diferenciación Celular , Estudios de Cohortes , Desoxiglucosa/análogos & derivados , Glucólisis , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células K562 , Fosforilación Oxidativa
17.
AIDS ; 34(12): 1713-1723, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501836

RESUMEN

OBJECTIVE: Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN: We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS: Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS: A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION: These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Antígenos HLA-C , Humanos , Péptidos , Receptores KIR , Receptores de Células Asesinas Naturales
18.
Hepatol Commun ; 4(3): 409-424, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140657

RESUMEN

The transcription factor promyelocytic leukemia zinc finger protein (PLZF) is involved in the development of natural killer (NK) cells and innate lymphoid cells, including liver-resident NK cells in mice. In human NK cells, the role of PLZF in liver residency is still unknown. Expression of PLZF in matched human peripheral blood- and liver-derived NK cells and the association of PLZF expression with surface molecules and transcription factors relevant for tissue residency were investigated using multiparameter flow cytometry and assessing single-cell messenger RNA (mRNA) levels. Intrahepatic cluster of differentiation (CD)56bright NK cells expressed significantly higher levels of PLZF than peripheral blood CD56bright NK cells, which were predominantly PLZFlo. Expression of PLZF was highest within C-X-C motif chemokine receptor 6 (CXCR6)+CD69+ liver-resident NK cells among intrahepatic CD56bright NK cell populations. Association of PLZF with liver-residency markers was also reflected at mRNA levels. A small PLZFhiCD56bright NK cell population was identified in peripheral blood that also expressed the liver-residency markers CXCR6 and CD69 and shared functional characteristics with liver-resident NK cells. Conclusion: PLZF is implicated as part of a transcriptional network that promotes liver residency of human NK cells. Expression of liver-homing markers on peripheral blood PLZFhiCD56bright NK cells identifies an intermediate population potentially contributing to the maintenance of liver-resident NK cells.

19.
J Leukoc Biol ; 105(6): 1331-1340, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30779432

RESUMEN

NK cells have been implicated to affect the outcome of numerous liver diseases. In particular, members of the killer-cell Ig-like receptor (KIR) family, predominantly expressed by NK cells, have been associated with the outcome of hepatitis C virus infection and clearance of hepatocellular carcinoma. Inhibitory KIRs tune NK cell function through interaction with HLA class I, a process termed education. Nevertheless, the impact of the hepatic environment on NK cell education is incompletely understood. Therefore, we investigated the composition and function of hepatic KIR-expressing NK cells. Matched PBMC and hepatic lymphocytes were isolated from 20 individuals undergoing liver surgery and subsequently phenotypically analyzed for expression of KIRs and markers for tissue residency using flow cytometry. NK cell function was determined by co-culturing NK cells with the target cell line 721.221 and subsequent assessment of CD107a, IFN-γ, and TNF-α expression. Liver-resident CXCR6+ /CD56Bright NK cells lacked KIRs and were predominantly educated through NKG2A, while CXCR6- /CD16+ NK cells expressed KIRs and resembled peripheral blood NK cells. Hepatic NK cells showed lower response rates compared to peripheral blood NK cells; in particular, CXCR6+ NK cells were hyporesponsive to stimulation with target cells. The high proportion of educated NK cells in both subsets indicates the importance of self-inhibitory receptors for the balance between maintenance of self-tolerance and functional readiness. However, the reduced functionality of hepatic NK cells may reflect the impact of the tolerogenic hepatic environment on NK cells irrespective of NK cell education.


Asunto(s)
Hepacivirus/inmunología , Hepatitis C/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Hígado/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Receptores CXCR6/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Línea Celular , Femenino , Hepatitis C/patología , Humanos , Células Asesinas Naturales/patología , Hígado/patología , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Masculino
20.
Front Immunol ; 10: 1247, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231382

RESUMEN

Macrophages play central roles in inflammatory reactions and initiation of immune responses during infections. More than 80% of total tissue macrophages are described to be located in the liver as liver-resident macrophages, also named Kupffer cells (KCs). While studies in mice have established a central role of liver-resident KCs in regulating liver inflammation, their phenotype and function are not well-characterized in humans. Comparing paired human liver and peripheral blood samples, we observed significant differences in the distribution of macrophage (Mφ) subsets, with lower frequencies of CD14hiCD16lo and higher frequencies of CD14int-hiCD16int Mφ in human livers. Intrahepatic Mφ consisted of diverse subsets with differential expression of CD49a, a liver-residency marker previously described for human and mice NK cells, and VSIG4 and/or MARCO, two recently described human tissue Mφ markers. Furthermore, intrahepatic CD49a+ Mφ expressed significantly higher levels of maturation and activation markers, exhibited higher baseline levels of TNF-α, IL-12, and IL-10 production, but responded less to additional in vitro TLR stimulation. In contrast, intrahepatic CD49a- Mφ were highly responsive to stimulation with TLR ligands, similar to what was observed for CD49a- monocytes (MOs) in peripheral blood. Taken together, these studies identified populations of CD49a+, VSIG4+, and/or MARCO+ Mφ in human livers, and demonstrated that intrahepatic CD49a+ Mφ differed in phenotype and function from intrahepatic CD49a- Mφ as well as from peripheral blood-derived monocytes.


Asunto(s)
Integrina alfa1/inmunología , Hígado/inmunología , Macrófagos/citología , Macrófagos/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA