Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38614100

RESUMEN

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Asunto(s)
Virus de la Lengua Azul , Proteínas de la Cápside , Cápside , Microscopía por Crioelectrón , ARN Viral , Empaquetamiento del Genoma Viral , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/metabolismo , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Animales , ARN Viral/metabolismo , ARN Viral/genética , Genoma Viral/genética , Ensamble de Virus , Tomografía con Microscopio Electrónico , Virión/metabolismo , Virión/genética , Virión/ultraestructura , Modelos Moleculares , Línea Celular , Cricetinae
2.
Nat Methods ; 19(6): 724-729, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637302

RESUMEN

Structures of two globular proteins were determined ab initio using microcrystal electron diffraction (MicroED) data that were collected on a direct electron detector in counting mode. Microcrystals were identified using a scanning electron microscope (SEM) and thinned with a focused ion beam (FIB) to produce crystalline lamellae of ideal thickness. Continuous-rotation data were collected using an ultra-low exposure rate to enable electron counting in diffraction. For the first sample, triclinic lysozyme extending to a resolution of 0.87 Å, an ideal helical fragment of only three alanine residues provided initial phases. These phases were improved using density modification, allowing the entire atomic structure to be built automatically. A similar approach was successful on a second macromolecular sample, proteinase K, which is much larger and diffracted to a resolution of 1.5 Å. These results demonstrate that macromolecules can be determined to sub-ångström resolution by MicroED and that ab initio phasing can be successfully applied to counting data.


Asunto(s)
Electrones , Sustancias Macromoleculares/química
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873060

RESUMEN

The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.


Asunto(s)
Benchmarking/métodos , Microscopía por Crioelectrón/métodos , Manejo de Especímenes/métodos , Animales , Cristalización/métodos , Cristalografía , Electrones , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares
4.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34462357

RESUMEN

G protein-coupled receptors (GPCRs), or seven-transmembrane receptors, are a superfamily of membrane proteins that are critically important to physiological processes in the human body. Determining high-resolution structures of GPCRs without bound cognate signaling partners, such as a G protein, requires crystallization in lipidic cubic phase (LCP). GPCR crystals grown in LCP are often too small for traditional X-ray crystallography. These microcrystals are ideal for investigation by microcrystal electron diffraction (MicroED), but the gel-like nature of LCP makes traditional approaches to MicroED sample preparation insurmountable. Here, we show that the structure of a human A2A adenosine receptor can be determined by MicroED after converting the LCP into the sponge phase followed by focused ion-beam milling. We determined the structure of the A2A adenosine receptor to 2.8-Å resolution and resolved an antagonist in its orthosteric ligand-binding site, as well as four cholesterol molecules bound around the receptor. This study lays the groundwork for future structural studies of lipid-embedded membrane proteins by MicroED using single microcrystals that would be impossible with other crystallographic methods.


Asunto(s)
Microscopía por Crioelectrón/métodos , Nanopartículas/química , Receptores Acoplados a Proteínas G/química , Receptores Purinérgicos P1/química , Humanos , Lípidos/química , Conformación Proteica
5.
Langmuir ; 39(36): 12541-12549, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647566

RESUMEN

Aberrant levels of glycolipids expressed on cellular surfaces are characteristic of different types of cancers. The oligomer of acylated lysine (OAK) mimicking antimicrobial peptides displays in vitro activity against human and murine melanoma cell lines with upregulated GD3 and GM3 gangliosides. Herein, we demonstrate the capability of OAK to intercalate into the sialo-oligosaccharides of DPPC/GD3 and DPPC/GM3 lipid monolayers using X-ray scattering. The lack of insertion into monolayers containing phosphatidylserine suggests that the mechanism of action by OAKs against glycosylated lipid membranes is not merely driven by charge effects. The fluorescence microscopy data demonstrates the membrane-lytic activity of OAK. Understanding the molecular basis for selectivity toward GD3 and GM3 gangliosides by antimicrobial lipopeptides will contribute to the development of novel therapies to cure melanoma and other malignancies.


Asunto(s)
Gangliósidos , Melanoma , Humanos , Animales , Ratones , Gangliósidos/farmacología , Péptidos Catiónicos Antimicrobianos , Glucolípidos , Transporte Biológico
6.
Proc Natl Acad Sci U S A ; 117(51): 32380-32385, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293416

RESUMEN

A structure of the murine voltage-dependent anion channel (VDAC) was determined by microcrystal electron diffraction (MicroED). Microcrystals of an essential mutant of VDAC grew in a viscous bicelle suspension, making it unsuitable for conventional X-ray crystallography. Thin, plate-like crystals were identified using scanning-electron microscopy (SEM). Crystals were milled into thin lamellae using a focused-ion beam (FIB). MicroED data were collected from three crystal lamellae and merged for completeness. The refined structure revealed unmodeled densities between protein monomers, indicative of lipids that likely mediate contacts between the proteins in the crystal. This body of work demonstrates the effectiveness of milling membrane protein microcrystals grown in viscous media using a focused ion beam for subsequent structure determination by MicroED. This approach is well suited for samples that are intractable by X-ray crystallography. To our knowledge, the presented structure is a previously undescribed mutant of the membrane protein VDAC, crystallized in a lipid bicelle matrix and solved by MicroED.


Asunto(s)
Canales Aniónicos Dependientes del Voltaje/química , Animales , Microscopía por Crioelectrón/métodos , Cristalización , Lípidos/química , Ratones , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión , Proteínas Mitocondriales/química , Conformación Proteica
7.
Biophys J ; 121(18): 3533-3541, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35841141

RESUMEN

Cholesterol induces faster collapse by compressed films of pulmonary surfactant. Because collapse prevents films from reaching the high surface pressures achieved in the alveolus, most therapeutic surfactants remove or omit cholesterol. The studies here determined the structural changes by which cholesterol causes faster collapse by films of dipalmitoyl phosphatidylcholine, used as a simple model for the functional alveolar film. Measurements of isobaric collapse, with surface pressure held constant at 52 mN/m, showed that cholesterol had little effect until the mol fraction of cholesterol, Xchol, exceeded 0.20. Structural measurements of grazing incidence X-ray diffraction at ambient laboratory temperatures and a surface pressure of 44 mN/m, just below the onset of collapse, showed that the major structural change in an ordered phase occurred at lower Xchol. A centered rectangular unit cell with tilted chains converted to an untilted hexagonal structure over the range of Xchol = 0.0-0.1. For Xchol = 0.1-0.4, the ordered structure was nearly invariant; the hexagonal unit cell persisted, and the spacing of the chains was essentially unchanged. That invariance strongly suggests that above Xchol = 0.1, cholesterol partitions into a disordered phase, which coexists with the ordered domains. The phase rule requires that for a binary film with coexisting phases, the stoichiometries of the ordered and disordered regions must remain constant. Added cholesterol must increase the area of the disordered phase at the expense of the ordered regions. X-ray scattering from dipalmitoyl phosphatidylcholine/cholesterol fit with that prediction. The data also show a progressive decrease in the size of crystalline domains. Our results suggest that cholesterol promotes adsorption not by altering the unit cell of the ordered phase but by decreasing both its total area and the size of individual crystallites.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Presión , Surfactantes Pulmonares/química , Tensoactivos
8.
J Struct Biol ; 214(4): 107886, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044956

RESUMEN

Microcrystal electron diffraction (MicroED) uses electron cryo-microscopy (cryo-EM) to collect diffraction data from small crystals during continuous rotation of the sample. As a result of advances in hardware as well as methods development, the data quality has continuously improved over the past decade, to the point where even macromolecular structures can be determined ab initio. Detectors suitable for electron diffraction should ideally have fast readout to record data in movie mode, and high sensitivity at low exposure rates to accurately report the intensities. Direct electron detectors are commonly used in cryo-EM imaging for their sensitivity and speed, but despite their availability are generally not used in diffraction. Primary concerns with diffraction experiments are the dynamic range and coincidence loss, which will corrupt the measurement if the flux exceeds the count rate of the detector. Here, we describe instrument setup and low-exposure MicroED data collection in electron-counting mode using K2 and K3 direct electron detectors and show that the integrated intensities can be effectively used to solve structures of two macromolecules between 1.2 Å and 2.8 Å resolution. Even though a beam stop was not used with the K3 studies we did not observe damage to the camera. As these cameras are already available in many cryo-EM facilities, this provides opportunities for users who do not have access to dedicated facilities for MicroED.


Asunto(s)
Electrones
9.
Langmuir ; 36(45): 13439-13447, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33080138

RESUMEN

When compressed by the shrinking alveolar surface area during exhalation, films of pulmonary surfactant in situ reduce surface tension to levels at which surfactant monolayers collapse from the surface in vitro. Vesicles of pulmonary surfactant added below these monolayers slow collapse. X-ray scattering here determined the structural changes induced by the added vesicles. Grazing incidence X-ray diffraction on monolayers of extracted calf surfactant detected an ordered phase. Mixtures of dipalmitoyl phosphatidylcholine and cholesterol, but not the phospholipid alone, mimic that structure. At concentrations that stabilize the monolayers, vesicles in the subphase had no effect on the unit cell, and X-ray reflection showed that the film remained monomolecular. The added vesicles, however, produced a concentration-dependent increase in the diffracted intensity. These results suggest that the enhanced resistance to collapse results from enlargement by the additional material of the ordered phase.


Asunto(s)
Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina , Fosfolípidos , Propiedades de Superficie , Tensión Superficial , Tensoactivos
10.
J Am Chem Soc ; 141(50): 19817-19822, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31747522

RESUMEN

We previously engineered the ß-subunit of tryptophan synthase (TrpB), which catalyzes the condensation of l-serine and indole to l-tryptophan, to synthesize a range of noncanonical amino acids from l-serine and indole derivatives or other nucleophiles. Here we employ directed evolution to engineer TrpB to accept 3-substituted oxindoles and form C-C bonds leading to new quaternary stereocenters. Initially, the variants that could use 3-substituted oxindoles preferentially formed N-C bonds on N1 of the substrate. Protecting N1 encouraged evolution toward C-alkylation, which persisted when protection was removed. Six generations of directed evolution resulted in TrpB Pfquat with a 400-fold improvement in activity for alkylation of 3-substituted oxindoles and the ability to selectively form a new, all-carbon quaternary stereocenter at the γ-position of the amino acid products. The enzyme can also alkylate and form all-carbon quaternary stereocenters on structurally similar lactones and ketones, where it exhibits excellent regioselectivity for the tertiary carbon. The configurations of the γ-stereocenters of two of the products were determined via microcrystal electron diffraction (MicroED), and we report the MicroED structure of a small molecule obtained using the Falcon III direct electron detector. Highly thermostable and expressed at >500 mg/L E. coli culture, TrpB Pfquat offers an efficient, sustainable, and selective platform for the construction of diverse noncanonical amino acids bearing all-carbon quaternary stereocenters.


Asunto(s)
Carbono/química , Triptófano Sintasa/química , Triptófano Sintasa/metabolismo , Alquilación , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas , Triptófano Sintasa/genética
11.
Biopolymers ; 110(6): e23274, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30892696

RESUMEN

Synthetic polymers mimicking antimicrobial peptides have drawn considerable interest as potential therapeutics. N-substituted glycines, or peptoids, are recognized by their in vivo stability and ease of synthesis. Peptoids are thought to act primarily on the negatively charged lipids that are abundant in bacterial cell membranes. A mechanistic understanding of lipid-peptoid interaction at the molecular level will provide insights for rational design and optimization of peptoids. Here, we highlight recent studies that utilize synchrotron liquid surface X-ray scattering to characterize the underlying peptoid interactions with bacterial and eukaryotic membranes. Cellular membranes are highly complex, and difficult to characterize at the molecular level. Model systems including Langmuir monolayers, are used in these studies to reduce system complexity. The general workflow of these systems and the corresponding data analysis techniques are presented alongside recent findings. These studies investigate the role of peptoid physicochemical characteristics on membrane activity. Specifically, the roles of cationic charge, conformational constraint via macrocyclization, and hydrophobicity are shown to correlate their membrane interactions to biological activities in vitro. These structure-activity relationships have led to new insights into the mechanism of action by peptoid antimicrobials, and suggest optimization strategies for future therapeutics based on peptoids.


Asunto(s)
Diseño de Fármacos , Peptoides/química , Péptidos Catiónicos Antimicrobianos/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Ciclización , Interacciones Hidrofóbicas e Hidrofílicas , Peptoides/metabolismo , Fosfatidilgliceroles/química , Termodinámica , Rayos X
12.
Biochim Biophys Acta Biomembr ; 1860(6): 1414-1423, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29621496

RESUMEN

Hydrophobic interactions govern specificity for natural antimicrobial peptides. No such relationship has been established for synthetic peptoids that mimic antimicrobial peptides. Peptoid macrocycles synthesized with five different aromatic groups are investigated by minimum inhibitory and hemolytic concentration assays, epifluorescence microscopy, atomic force microscopy, and X-ray reflectivity. Peptoid hydrophobicity is determined using high performance liquid chromatography. Disruption of bacterial but not eukaryotic lipid membranes is demonstrated on the solid supported lipid bilayers and Langmuir monolayers. X-ray reflectivity studies demonstrate that intercalation of peptoids with zwitterionic or negatively charged lipid membranes is found to be regulated by hydrophobicity. Critical levels of peptoid selectivity are demonstrated and found to be modulated by their hydrophobic groups. It is suggested that peptoids may follow different optimization schemes as compared to their natural analogues.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Lípidos de la Membrana/química , Aniones/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Cromatografía Líquida de Alta Presión , Eritrocitos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Estructura Molecular , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Curr Opin Colloid Interface Sci ; 34: 9-16, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30166936

RESUMEN

Electron crystallography is widespread in material science applications, but for biological samples its use has been restricted to a handful of examples where two-dimensional (2D) crystals or helical samples were studied either by electron diffraction and/or imaging. Electron crystallography in cryoEM, was developed in the mid-1970s and used to solve the structure of several membrane proteins and some soluble proteins. In 2013, a new method for cryoEM was unveiled and named Micro-crystal Electron Diffraction, or MicroED, which is essentially three-dimensional (3D) electron crystallography of microscopic crystals. This method uses truly 3D crystals, that are about a billion times smaller than those typically used for X-ray crystallography, for electron diffraction studies. There are several important differences and some similarities between electron crystallography of 2D crystals and MicroED. In this review, we describe the development of these techniques, their similarities and differences, and offer our opinion of future directions in both fields.

14.
Langmuir ; 34(36): 10673-10683, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30102043

RESUMEN

Synchrotron-based X-ray scattering measurements of phase-separated surfactant monolayers at the air-water interface provide molecular-level structural information about the packing and ordering of film components. In this work, grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XR) measurements were used to collect crystallographic structural information for binary mixed monolayers of arachidic acid (AA, C19H39COOH) with perfluorotetradecanoic acid (PA, C13F27COOH), a system that has previously been investigated using a variety of thermodynamic and micron-scale structural characterization methods. GIXD measurements at surface pressures of π = 5, 15, and 30 mN/m indicated that AA in pure and mixed films forms a rectangular lattice at π = 5 and 15 mN/m but a hexagonal lattice at π = 30 mN/m. PA formed hexagonal lattices under all conditions, with films being highly ordered and crystalline (as determined by Bragg peak width) at even the lowest surface pressures investigated. Phase separation occurred for all mixed monolayer film compositions and surface pressures, manifesting as diffraction peaks characteristic of the individual components appearing at different in-plane scattering vector qxy. For both pure and mixed films, the molecular tilt angle of the AA hydrocarbon chain toward the nearest-neighbor was substantial at low pressures but decreased with increasing pressure. The PA fluorocarbon chain showed negligible molecular tilt under all conditions, and was oriented normal to the subphase surface regardless of surface pressure or the presence of AA in the films. In all cases, the two components in the mixed film behaved entirely independently of film composition, which is exactly the expected result for a fully phase-separated, immiscible system. XR measurements of film thickness at the air-water interface supported these results; overall film thickness approached the calculated ideal surfactant tail lengths with increasing surface pressure, indicating nearly normal oriented surfactants. The overall surfactant packing and crystallographic features of the mixed monolayers are discussed in terms of the lipophobic nature of the perfluorinated surfactant as well as in context of thermodynamic miscibility and domain structure formation reported elsewhere in the literature for these mixed monolayer systems.

15.
Biophys J ; 110(8): 1777-1788, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27119638

RESUMEN

Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.


Asunto(s)
4-Hidroxicumarinas/toxicidad , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Ratas
16.
J Am Chem Soc ; 138(38): 12432-9, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27598340

RESUMEN

Achieving structurally well-defined catalytic species requires a fundamental understanding of surface chemistry. Detailed structural characterization of the catalyst binding sites in situ, such as single site catalysts on silica supports, is technically challenging or even unattainable. Octadecyltrioxysilane (OTOS) monolayers formed from octadecyltrimethoxysilane (OTMS) at the air-liquid interface after hydrolysis and condensation at low pH were chosen as a model system of surface binding sites in silica-supported Zn(2+) catalysts. We characterize the system by grazing incidence X-ray diffraction, X-ray reflectivity (XR), and X-ray fluorescence spectroscopy (XFS). Previous X-ray and infrared surface studies of OTMS/OTOS films at the air-liquid interface proposed the formation of polymer OTOS structures. According to our analysis, polymer formation is inconsistent with the X-ray observations and structural properties of siloxanes; it is energetically unfavorable and thus highly unlikely. We suggest an alternative mechanism of hydrolysis/condensation in OTMS leading to the formation of structurally allowed cyclic trimers with the six-membered siloxane rings, which explain well both the X-ray and infrared results. XR and XFS consistently demonstrate that tetrahedral [Zn(NH3)4](2+) ions bind to hydroxyl groups of the film at a stoichiometric ratio of OTOS:Zn ∼ 2:1. The high binding affinity of zinc ions to OTOS trimers suggests that the six-membered siloxane rings are binding locations for single site Zn/SiO2 catalysts. Our results show that OTOS monolayers may serve as a platform for studying silica surface chemistry or hydroxyl-mediated reactions.

17.
Langmuir ; 32(48): 12905-12913, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27793068

RESUMEN

The peptidomimetic approach has emerged as a powerful tool for overcoming the inherent limitations of natural antimicrobial peptides, where the therapeutic potential can be improved by increasing the selectivity and bioavailability. Restraining the conformational flexibility of a molecule may reduce the entropy loss upon its binding to the membrane. Experimental findings demonstrate that the cyclization of linear antimicrobial peptoids increases their bactericidal activity against Staphylococcus aureus while maintaining high hemolytic concentrations. Surface X-ray scattering shows that macrocyclic peptoids intercalate into Langmuir monolayers of anionic lipids with greater efficacy than for their linear analogues. It is suggested that cyclization may increase peptoid activity by allowing the macrocycle to better penetrate the bacterial cell membrane.


Asunto(s)
Antibacterianos/farmacología , Peptoides/farmacología , Membrana Celular/efectos de los fármacos , Ciclización , Staphylococcus aureus/efectos de los fármacos
18.
Biophys J ; 109(12): 2537-2545, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26682812

RESUMEN

Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted as monolayers at the air-water interface, and their properties, as well as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region, but was prevented from this penetration into the modified lipopolysaccharides. Results correlate with behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Lipopolisacáridos/metabolismo , Novobiocina/farmacología , Salmonella/citología , Salmonella/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lípido A/metabolismo , Novobiocina/química , Novobiocina/metabolismo , Permeabilidad
19.
Ultramicroscopy ; 257: 113905, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086288

RESUMEN

We report new advancements in the determination and high-resolution structural analysis of beam-sensitive metal organic frameworks (MOFs) using microcrystal electron diffraction (MicroED) coupled with focused ion beam milling at cryogenic temperatures (cryo-FIB). A microcrystal of the beam-sensitive MOF, ZIF-8, was ion-beam milled in a thin lamella approximately 150 nm thick. MicroED data were collected from this thin lamella using an energy filter and a direct electron detector operating in counting mode. Using this approach, we achieved a greatly improved resolution of 0.59 Å with a minimal total exposure of only 0.64 e-/A2. These innovations not only improve model statistics but also further demonstrate that ion-beam milling is compatible with beam-sensitive materials, augmenting the capabilities of electron diffraction in MOF research.

20.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798449

RESUMEN

Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.5 Å. MP20 forms tetramers each of which contain 4 transmembrane α-helices that are packed against one another forming a helical bundle. Both the N- and C- termini of MP20 are cytoplasmic. We found that each MP20 tetramer formed adhesive interactions with an opposing tetramer in a head-to-head fashion. These interactions were mediated by the extracellular loops of the protein. The dimensions of the MP20 adhesive junctions are consistent with the 11 nm thin lens junctions. Investigation of MP20 localization in human lenses indicated that in young fiber cells MP20 was stored intracellularly in vesicles and upon fiber cell maturation MP20 inserted into the plasma membrane and restricted the extracellular space. Together these results suggest that MP20 forms lens thin junctions in vivo confirming its role as a structural protein in the human eye lens, essential for its optical transparency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA