Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Surg Endosc ; 37(11): 8690-8707, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516693

RESUMEN

BACKGROUND: Surgery generates a vast amount of data from each procedure. Particularly video data provides significant value for surgical research, clinical outcome assessment, quality control, and education. The data lifecycle is influenced by various factors, including data structure, acquisition, storage, and sharing; data use and exploration, and finally data governance, which encompasses all ethical and legal regulations associated with the data. There is a universal need among stakeholders in surgical data science to establish standardized frameworks that address all aspects of this lifecycle to ensure data quality and purpose. METHODS: Working groups were formed, among 48 representatives from academia and industry, including clinicians, computer scientists and industry representatives. These working groups focused on: Data Use, Data Structure, Data Exploration, and Data Governance. After working group and panel discussions, a modified Delphi process was conducted. RESULTS: The resulting Delphi consensus provides conceptualized and structured recommendations for each domain related to surgical video data. We identified the key stakeholders within the data lifecycle and formulated comprehensive, easily understandable, and widely applicable guidelines for data utilization. Standardization of data structure should encompass format and quality, data sources, documentation, metadata, and account for biases within the data. To foster scientific data exploration, datasets should reflect diversity and remain adaptable to future applications. Data governance must be transparent to all stakeholders, addressing legal and ethical considerations surrounding the data. CONCLUSION: This consensus presents essential recommendations around the generation of standardized and diverse surgical video databanks, accounting for multiple stakeholders involved in data generation and use throughout its lifecycle. Following the SAGES annotation framework, we lay the foundation for standardization of data use, structure, and exploration. A detailed exploration of requirements for adequate data governance will follow.


Asunto(s)
Inteligencia Artificial , Mejoramiento de la Calidad , Humanos , Consenso , Recolección de Datos
2.
JMIR Med Inform ; 10(1): e27743, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35049510

RESUMEN

BACKGROUND: Although digital and data-based technologies are widespread in various industries in the context of Industry 4.0, the use of smart connected devices in health care is still in its infancy. Innovative solutions for the medical environment are affected by difficult access to medical device data and high barriers to market entry because of proprietary systems. OBJECTIVE: In the proof-of-concept project OP 4.1, we show the business viability of connecting and augmenting medical devices and data through software add-ons by giving companies a technical and commercial platform for the development, implementation, distribution, and billing of innovative software solutions. METHODS: The creation of a central platform prototype requires the collaboration of several independent market contenders, including medical users, software developers, medical device manufacturers, and platform providers. A dedicated consortium of clinical and scientific partners as well as industry partners was set up. RESULTS: We demonstrate the successful development of the prototype of a user-centric, open, and extensible platform for the intelligent support of processes starting with the operating room. By connecting heterogeneous data sources and medical devices from different manufacturers and making them accessible for software developers and medical users, the cloud-based platform OP 4.1 enables the augmentation of medical devices and procedures through software-based solutions. The platform also allows for the demand-oriented billing of apps and medical devices, thus permitting software-based solutions to fast-track their economic development and become commercially successful. CONCLUSIONS: The technology and business platform OP 4.1 creates a multisided market for the successful development, implementation, distribution, and billing of new software solutions in the operating room and in the health care sector in general. Consequently, software-based medical innovation can be translated into clinical routine quickly, efficiently, and cost-effectively, optimizing the treatment of patients through smartly assisted procedures.

3.
Eur Urol Focus ; 8(2): 613-622, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941503

RESUMEN

CONTEXT: As the role of AI in healthcare continues to expand there is increasing awareness of the potential pitfalls of AI and the need for guidance to avoid them. OBJECTIVES: To provide ethical guidance on developing narrow AI applications for surgical training curricula. We define standardised approaches to developing AI driven applications in surgical training that address current recognised ethical implications of utilising AI on surgical data. We aim to describe an ethical approach based on the current evidence, understanding of AI and available technologies, by seeking consensus from an expert committee. EVIDENCE ACQUISITION: The project was carried out in 3 phases: (1) A steering group was formed to review the literature and summarize current evidence. (2) A larger expert panel convened and discussed the ethical implications of AI application based on the current evidence. A survey was created, with input from panel members. (3) Thirdly, panel-based consensus findings were determined using an online Delphi process to formulate guidance. 30 experts in AI implementation and/or training including clinicians, academics and industry contributed. The Delphi process underwent 3 rounds. Additions to the second and third-round surveys were formulated based on the answers and comments from previous rounds. Consensus opinion was defined as ≥ 80% agreement. EVIDENCE SYNTHESIS: There was 100% response from all 3 rounds. The resulting formulated guidance showed good internal consistency, with a Cronbach alpha of >0.8. There was 100% consensus that there is currently a lack of guidance on the utilisation of AI in the setting of robotic surgical training. Consensus was reached in multiple areas, including: 1. Data protection and privacy; 2. Reproducibility and transparency; 3. Predictive analytics; 4. Inherent biases; 5. Areas of training most likely to benefit from AI. CONCLUSIONS: Using the Delphi methodology, we achieved international consensus among experts to develop and reach content validation for guidance on ethical implications of AI in surgical training. Providing an ethical foundation for launching narrow AI applications in surgical training. This guidance will require further validation. PATIENT SUMMARY: As the role of AI in healthcare continues to expand there is increasing awareness of the potential pitfalls of AI and the need for guidance to avoid them.In this paper we provide guidance on ethical implications of AI in surgical training.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Inteligencia Artificial , Consenso , Técnica Delphi , Humanos , Reproducibilidad de los Resultados
4.
Med Image Anal ; 76: 102306, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34879287

RESUMEN

Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.


Asunto(s)
Ciencia de los Datos , Aprendizaje Automático , Humanos
6.
J Med Imaging (Bellingham) ; 5(3): 034002, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30840724

RESUMEN

Accurate segmentations in medical images are the foundations for various clinical applications. Advances in machine learning-based techniques show great potential for automatic image segmentation, but these techniques usually require a huge amount of accurately annotated reference segmentations for training. The guiding hypothesis of this paper was that crowd-algorithm collaboration could evolve as a key technique in large-scale medical data annotation. As an initial step toward this goal, we evaluated the performance of untrained individuals to detect and correct errors made by three-dimensional (3-D) medical segmentation algorithms. To this end, we developed a multistage segmentation pipeline incorporating a hybrid crowd-algorithm 3-D segmentation algorithm integrated into a medical imaging platform. In a pilot study of liver segmentation using a publicly available dataset of computed tomography scans, we show that the crowd is able to detect and refine inaccurate organ contours with a quality similar to that of experts (engineers with domain knowledge, medical students, and radiologists). Although the crowds need significantly more time for the annotation of a slice, the annotation rate is extremely high. This could render crowdsourcing a key tool for cost-effective large-scale medical image annotation.

7.
Int J Comput Assist Radiol Surg ; 13(9): 1397-1408, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30006820

RESUMEN

PURPOSE: The development of common ontologies has recently been identified as one of the key challenges in the emerging field of surgical data science (SDS). However, past and existing initiatives in the domain of surgery have mainly been focussing on individual groups and failed to achieve widespread international acceptance by the research community. To address this challenge, the authors of this paper launched a European initiative-OntoSPM Collaborative Action-with the goal of establishing a framework for joint development of ontologies in the field of SDS. This manuscript summarizes the goals and the current status of the international initiative. METHODS: A workshop was organized in 2016, gathering the main European research groups having experience in developing and using ontologies in this domain. It led to the conclusion that a common ontology for surgical process models (SPM) was absolutely needed, and that the existing OntoSPM ontology could provide a good starting point toward the collaborative design and promotion of common, standard ontologies on SPM. RESULTS: The workshop led to the OntoSPM Collaborative Action-launched in mid-2016-with the objective to develop, maintain and promote the use of common ontologies of SPM relevant to the whole domain of SDS. The fundamental concept, the architecture, the management and curation of the common ontology have been established, making it ready for wider public use. CONCLUSION: The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts' suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.


Asunto(s)
Ontologías Biológicas , Procedimientos Quirúrgicos Mínimamente Invasivos , Modelos Anatómicos , Reconocimiento de Normas Patrones Automatizadas , Europa (Continente) , Humanos , Cooperación Internacional
8.
Nat Commun ; 9(1): 5217, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523263

RESUMEN

International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.


Asunto(s)
Tecnología Biomédica/métodos , Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Evaluación de la Tecnología Biomédica/métodos , Investigación Biomédica/métodos , Investigación Biomédica/normas , Tecnología Biomédica/clasificación , Tecnología Biomédica/normas , Diagnóstico por Imagen/clasificación , Diagnóstico por Imagen/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Evaluación de la Tecnología Biomédica/normas
9.
Int J Comput Assist Radiol Surg ; 10(8): 1201-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25895078

RESUMEN

PURPOSE: Feature tracking and 3D surface reconstruction are key enabling techniques to computer-assisted minimally invasive surgery. One of the major bottlenecks related to training and validation of new algorithms is the lack of large amounts of annotated images that fully capture the wide range of anatomical/scene variance in clinical practice. To address this issue, we propose a novel approach to obtaining large numbers of high-quality reference image annotations at low cost in an extremely short period of time. METHODS: The concept is based on outsourcing the correspondence search to a crowd of anonymous users from an online community (crowdsourcing) and comprises four stages: (1) feature detection, (2) correspondence search via crowdsourcing, (3) merging multiple annotations per feature by fitting Gaussian finite mixture models, (4) outlier removal using the result of the clustering as input for a second annotation task. RESULTS: On average, 10,000 annotations were obtained within 24 h at a cost of $100. The annotation of the crowd after clustering and before outlier removal was of expert quality with a median distance of about 1 pixel to a publically available reference annotation. The threshold for the outlier removal task directly determines the maximum annotation error, but also the number of points removed. CONCLUSIONS: Our concept is a novel and effective method for fast, low-cost and highly accurate correspondence generation that could be adapted to various other applications related to large-scale data annotation in medical image computing and computer-assisted interventions.


Asunto(s)
Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Cirugía Asistida por Computador/métodos , Algoritmos , Benchmarking , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA