Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25652260

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/genética , Transcripción Genética/fisiología , Respuesta de Proteína Desplegada/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteómica/métodos , Interferencia de ARN , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina
2.
Biol Cell ; 103(6): 271-85, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21729000

RESUMEN

LDs (lipid droplets) have long been considered as inert particles used by the cells to store fatty acids and sterols as esterified non-toxic lipid species (i.e. triacylglycerols and steryl esters). However, accumulating evidence suggests that LDs behave as a dynamic compartment, which is involved in the regulation of several aspects of the homoeostasis of their originating organelle, namely the ER (endoplasmic reticulum). The ER is particularly sensitive to physiological/pathological stimuli, which can ultimately induce ER stress. In the present review, after considering the basic mechanisms of LD formation and the signal cascades leading to ER stress, we focus on the connections between these two pathways. Taking into consideration recent data from the literature, we will try to draw possible mechanisms for the role of LDs in the regulation of ER homoeostasis and in ER-stress-related diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/metabolismo , Animales , Drosophila/metabolismo , Homeostasis , Humanos , Lipoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Triglicéridos/metabolismo
3.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33674316

RESUMEN

Mycoplasma immunoglobulin binding (MIB) and mycoplasma immunoglobulin protease (MIP) are surface proteins found in the majority of mycoplasma species, acting sequentially to capture antibodies and cleave off their VH domains. Cryo-electron microscopy structures show how MIB and MIP bind to a Fab fragment in a "hug of death" mechanism. As a result, the orientation of the VL and VH domains is twisted out of alignment, disrupting the antigen binding site. We also show that MIB-MIP has the ability to promote the dissociation of the antibody-antigen complex. This system is functional in cells and protects mycoplasmas from antibody-mediated agglutination. These results highlight the key role of the MIB-MIP system in immunity evasion by mycoplasmas through an unprecedented mechanism, and open exciting perspectives to use these proteins as potential tools in the antibody field.


Asunto(s)
Mycoplasma , Complejo Antígeno-Anticuerpo , Microscopía por Crioelectrón , Endopeptidasas , Fragmentos Fab de Inmunoglobulinas , Proteínas de la Membrana , Péptido Hidrolasas
4.
Nat Commun ; 11(1): 1426, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188856

RESUMEN

Acetaldehyde-alcohol dehydrogenase (AdhE) enzymes are a key metabolic enzyme in bacterial physiology and pathogenicity. They convert acetyl-CoA to ethanol via an acetaldehyde intermediate during ethanol fermentation in an anaerobic environment. This two-step reaction is associated to NAD+ regeneration, essential for glycolysis. The bifunctional AdhE enzyme is conserved in all bacterial kingdoms but also in more phylogenetically distant microorganisms such as green microalgae. It is found as an oligomeric form called spirosomes, for which the function remains elusive. Here, we use cryo-electron microscopy to obtain structures of Escherichia coli spirosomes in different conformational states. We show that spirosomes contain active AdhE monomers, and that AdhE filamentation is essential for its activity in vitro and function in vivo. The detailed analysis of these structures provides insight showing that AdhE filamentation is essential for substrate channeling within the filament and for the regulation of enzyme activity.


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/química , Aldehído Oxidorreductasas/metabolismo , Aldehídos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Etanol/metabolismo , Alcohol Deshidrogenasa/genética , Aldehído Oxidorreductasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares
5.
FEBS Lett ; 521(1-3): 47-52, 2002 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-12067724

RESUMEN

The mechanism by which the expression of pro-apoptotic protein Bax is able to kill yeast was investigated. Ethanol stress induces a permeabilization of the plasma membrane revealed by propidium iodide accumulation. Bax expression, although killing yeast cells, prevents this permeabilization. These effects are modulated by aeration, by manipulation of the unsaturation index of fatty acids and by addition of resveratrol, a known inhibitor of lipid oxidation. These data suggest that lipid oxidation is involved in Bax effects. Taken together, these data show for the first time a direct effect of Bax on plasma membrane permeability properties and suggest that yeast is a powerful tool for investigating the molecular mechanisms underlying this process.


Asunto(s)
Permeabilidad de la Membrana Celular , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/fisiología , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/farmacología , Etanol/farmacología , Expresión Génica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteína X Asociada a bcl-2
6.
Cancer Lett ; 337(1): 26-34, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23726843

RESUMEN

P97/CDC-48 is a prominent member of a highly evolutionary conserved Walker cassette - containing AAA+ATPases. It has been involved in numerous cellular processes ranging from the control of protein homeostasis to membrane trafficking through the intervention of specific accessory proteins. Expression of p97/CDC-48 in cancers has been correlated with tumor aggressiveness and prognosis, however the precise underlying molecular mechanisms remain to be characterized. Moreover p97/CDC-48 inhibitors were developed and are currently under intense investigation as anticancer drugs. Herein, we discuss the role of p97/CDC-48 in cancer development and its therapeutic potential in tumor cell biology.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas de Ciclo Celular/fisiología , Neoplasias/etiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Autofagia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Daño del ADN , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Lisosomas/metabolismo , FN-kappa B/fisiología , Neoplasias/terapia , Proteína que Contiene Valosina
7.
Mol Cancer Ther ; 11(12): 2610-20, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23041544

RESUMEN

The molecular mechanisms and cellular targets of sorafenib, a multikinase inhibitor used for the treatment of hepatocellular carcinoma (HCC), remain to be fully characterized. Recent studies have shown that sorafenib induces tumor cell death through the activation of endoplasmic reticulum stress signaling and/or autophagy in various cellular models. Using liver cancer-derived cell lines, we specifically show that the IRE1 and phosphorylated extracellular signal-regulated kinase arms of the unfolded protein response (UPR) become activated upon sorafenib treatment, whereas the ATF6 arm is inhibited. Our results also reveal that sorafenib treatment causes disruption to the secretory pathway, as witnessed by the fragmentation of the Golgi apparatus and the induction of autophagy. On the basis of these observations, we tested the relevance of the AAA⁺ ATPase p97/VCP as a potential functional target of sorafenib. Our results show that p97/VCP tyrosine phosphorylation is prevented upon sorafenib treatment, and that this can be correlated with enhanced membrane association. Moreover, we show that DBeQ, a recently discovered inhibitor of p97/VCP, enhances sorafenib-mediated toxicity in cultured cells. Our data show a novel mechanism for sorafenib-mediated cell death in HCC, which depends on the integrity of the secretory pathway; and we identify p97/VCP phosphorylation as a potential target for improved sorafenib treatment efficacy in patients.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Adenosina Trifosfatasas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Niacinamida/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Vías Secretoras/efectos de los fármacos , Sorafenib
8.
Methods Enzymol ; 491: 343-60, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21329809

RESUMEN

The endoplasmic reticulum (ER), first compartment of the secretory pathway, is mainly involved in calcium sequestration and lipid biosynthesis and in the translation, folding, and transport of secretory proteins. Under some physiological and physiopathological situations, secretory proteins do not acquire their folded conformation and accumulate in the ER. An adaptive response named the UPR is then triggered from this compartment to restore its homeostasis. In the past few years, interconnections between the UPR and small GTPase signaling have been established. In an attempt to further investigate these novel signaling networks, we hereby provide a detailed description of experimental strategies available. We describe in detail methods to monitor both UPR and small GTPase signaling and the outcomes of such approaches in the identification of new links between those signaling pathways using pharmacological and genetic screens. In physiopathological contexts, the guidelines herein should enable researchers in the field to establish essential means for determination of functional interactions between those pathways.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Genes Reporteros , Humanos , Proteínas de Unión al GTP Monoméricas/análisis , Interferencia de ARN , Activación Transcripcional
9.
J Cell Sci ; 122(Pt 6): 822-33, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19240113

RESUMEN

Glycosphingolipids (GSLs) are glycosylated derivatives of ceramide in the lipid bilayer. Their ubiquitous distribution and complexity suggest that they have important functions, but what these are in vivo is still poorly understood. Here, we characterize the phenotype of Caenorhabditis elegans mutants with essentially no GSLs. The C. elegans genome encodes three ceramide glucosyltransferase (CGT) genes, which encode enzymes required for GSL biosynthesis. Animals lacking CGT do not synthesize GSLs, arrest growth at the first larval stage, and display defects in a subset of cells in their digestive tract; these defects impair larval feeding, resulting in a starvation-induced growth arrest. Restoring CGT function in these digestive tract cells - but not in a variety of other tissues - is sufficient to rescue the phenotypes associated with loss of CGT function. These unexpected findings suggest that GSLs are dispensable in most C. elegans cells, including those of the nervous system.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Glucosiltransferasas/genética , Glicoesfingolípidos/biosíntesis , Secuencia de Aminoácidos , Animales , Apoptosis , Caenorhabditis elegans/embriología , Caenorhabditis elegans/ultraestructura , Proliferación Celular , Forma de la Célula , Ceramidas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/enzimología , Conducta Alimentaria , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Genes de Helminto , Glucosiltransferasas/química , Glicoesfingolípidos/química , Larva/enzimología , Larva/genética , Datos de Secuencia Molecular , Mutación/genética , Sistema Nervioso/enzimología , Especificidad de Órganos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transformación Genética
10.
Mol Biol Cell ; 19(3): 833-42, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18094048

RESUMEN

The lipid polyunsaturated fatty acids are highly enriched in synaptic membranes, including synaptic vesicles, but their precise function there is unknown. Caenorhabditis elegans fat-3 mutants lack long-chain polyunsaturated fatty acids (LC-PUFAs); they release abnormally low levels of serotonin and acetylcholine and are depleted of synaptic vesicles, but the mechanistic basis of these defects is unclear. Here we demonstrate that synaptic vesicle endocytosis is impaired in the mutants: the synaptic vesicle protein synaptobrevin is not efficiently retrieved after synaptic vesicles fuse with the presynaptic membrane, and the presynaptic terminals contain abnormally large endosomal-like compartments and synaptic vesicles. Moreover, the mutants have abnormally low levels of the phosphoinositide phosphatase synaptojanin at release sites and accumulate the main synaptojanin substrate phosphatidylinositol 4,5-bisphosphate at these sites. Both synaptobrevin and synaptojanin mislocalization can be rescued by providing exogenous arachidonic acid, an LC-PUFA, suggesting that the endocytosis defect is caused by LC-PUFA depletion. By showing that the genes fat-3 and synaptojanin act in the same endocytic pathway at synapses, our findings suggest that LC-PUFAs are required for efficient synaptic vesicle recycling, probably by modulating synaptojanin localization at synapses.


Asunto(s)
Caenorhabditis elegans/enzimología , Endocitosis , Ácidos Grasos Insaturados/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Vesículas Sinápticas/enzimología , Aciltransferasas/metabolismo , Animales , Ácido Araquidónico/farmacología , Cadherinas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Endocitosis/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Locomoción/efectos de los fármacos , Mutación/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas R-SNARE/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/ultraestructura
11.
Dev Dyn ; 232(2): 506-18, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15614773

RESUMEN

The microsomal triglyceride transfer protein (MTP) large subunit is required for the assembly and secretion of apolipoprotein B-containing lipoproteins. We have found a zebrafish mtp homologous gene coding a protein with 54% identity with human MTP large subunit with the most conserved regions distributed in the corresponding predicted alpha-helical and C- and A-sheet domains. In situ hybridizations showed that zebrafish mtp transcripts were distributed in the yolk syncytial layer during early embryogenesis and in anterior intestine and liver from 48 hr postfertilization onward. Real-time quantitative RT-PCR confirmed the developmental regulation and tissue-specificity of mtp expression. A significant pretranslational up-regulation of mtp expression was observed in the anterior intestine after feeding. The nutritional regulation of zebrafish mtp expression observed in the anterior intestine supports the notion that this protein, similar to mammalian MTP large subunit, could be a factor implicated directly or indirectly in large lipid droplets accumulation observed in the fish enterocyte after feeding.


Asunto(s)
Proteínas Portadoras/biosíntesis , Proteínas Portadoras/fisiología , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Clonación Molecular , Secuencia Conservada , Enterocitos/metabolismo , Humanos , Hibridación in Situ , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos , Lipoproteínas/química , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Factores de Tiempo , Distribución Tisular , Regulación hacia Arriba , Pez Cebra
12.
Mol Microbiol ; 47(2): 495-506, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12519199

RESUMEN

A yeast mutant was isolated that was resistant to Bax-induced cell death. It supports a mutation leading to decreased amounts of the protein Uth1p. A strain in which the UTH1 gene is disrupted also exhibits resistance to Bax expression. The absence of Uth1p does not change the mitochondrial localization of Bax, its insertion in the mitochondrial outer membrane or its cytochrome c-releasing activity. On the other hand, the absence of Uth1p does prevent the appearance of other hallmarks related to Bax expression in yeast, such as oxidation of mitochondrial lipid, production of reactive oxygen species and maintenance of plasma membrane properties after ethanol stress. The absence of Uth1p was also found to induce resistance to rapamycin, a specific inducer of autophagy. This resistance only appears when cells are grown under respiratory conditions, but not under fermentative conditions, suggesting that Uth1p acts in an autophagic pathway involving mitochondria, in accordance with its main localization in the outer mitochondrial membrane. Taken together, these data show that Bax is able to activate a death pathway related to autophagy in yeast, which also exhibits typical hallmarks of apoptosis, revealing a possible dual function of Bax in both types of death. This hypothesis is discussed in the light of observations suggesting a co-regulation of apoptosis and autophagy in mammalian cells.


Asunto(s)
Apoptosis , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Levaduras/crecimiento & desarrollo , Antifúngicos/farmacología , Autofagia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Metabolismo de los Lípidos , Proteínas de la Membrana , Mitocondrias/metabolismo , Proteínas Mitocondriales , Mutación , Estrés Oxidativo , Sirolimus/farmacología , Levaduras/genética , Levaduras/metabolismo , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA