Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Sci Food Agric ; 96(1): 319-30, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25644878

RESUMEN

BACKGROUND: Two botanical varieties of cabbage, namely Savoy (Brassica oleracea var. Sabauda L.) and White (Brassica oleracea var. Capitata L.) were used in order to understand the morphological, physiological and biochemical elements of functional salt stress response. Thirteen salt concentrations (range, 0 to 300 mmol L(-1) NaCl) were considered in Experiment 1 and, of these 13, three (0, 100 and 200 mmol L(-1) NaCl) were used in Experiment 2. RESULTS: Experiment 1 enabled the definition of two salinity thresholds (100 and 200 mmol L(-1) NaCl), associated with morphological and physiological adaptations. In Experiment 2, moderate salinity (100 mmol L(-1) NaCl) had lower effects on Savoy than in White cabbage yield (respectively, -16% and -62% from control). Concurrently, 100 mmol L(-1) NaCl resulted in a significant increase of antioxidant enzymes from control conditions, that was greater in Savoy (+289, +423 and +88%, respectively) as compared to White (+114, +356 and +28%, respectively) cabbage. Ion accumulation was found to be a key determinant in tissue osmotic adjustment (mainly in Savoy) whereas the contribution of organic osmolites was negligible. CONCLUSIONS: Higher antioxidative enzymatic activities in Savoy versus White cabbage after treatment with 100 mmol L(-1) NaCl were associated with improved water relations, thus suggesting a possible physiological pathway for alleviating perceived salt stress.


Asunto(s)
Antioxidantes/metabolismo , Brassica/fisiología , Genotipo , Presión Osmótica , Salinidad , Tolerancia a la Sal , Cloruro de Sodio/metabolismo , Brassica/genética , Brassica/metabolismo , Variación Genética , Iones/metabolismo , Ósmosis , Raíces de Plantas/metabolismo , Especificidad de la Especie , Agua/fisiología
2.
Foods ; 10(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477632

RESUMEN

Phenolic compounds in fruit provide human health benefits, and they contribute to color, taste, and the preservation of post-harvest fruit quality. Phenolic compounds also serve as modifiers of enzymatic activity, whether inhibition or stimulation. Polyphenol oxidases (PPO) and peroxidases (POD) use phenolic compounds as substrates in oxidative browning. Apple browning leads to flesh color, taste, texture, and flavor degradation, representing a drawback for the variety and its' market appraisal. This study was conducted to investigate the process of browning in 14 apple cultivars throughout post-harvest at three-time points: immediately (T0), one hour (T1), and 24 h (T2) after apples were cut in half. Color parameters L* (lightness), a* (red/green), b* (yellow/blue) were measured, and chroma (ΔC*) and color (ΔE) were calculated to quantify differences between T0₋T1 and T1₋T2 on the fruit surface. Enzymatic activity (PPO, POD) and phenolic composition were also quantified for each cultivar. 'Granny Smith' and 'Cripps Pink' browned minimally. In contrast, 'Fiesta' and 'Mondial Gala' browned severely, reporting high enzymatic activity and quantified phenolic concentration (QPC). Phenolic compound polymerization appears to play a significant role in enzymatic inhibition. 'Topaz' does not fit the high QPC, PPO, and browning formula, suggesting alternative pathways that contribute to apple browning.

3.
Foods ; 9(10)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066145

RESUMEN

The rising interest in beneficial health properties of polyphenol compounds in fruit initiated this investigation about biochemical composition in peach mesocarp/exocarp. Biochemical evaluation of phenolic compounds and ascorbic acid were quantified through high-performance liquid chromatography (HPLC) in relation to three flesh colors (white, yellow and red) and four flesh typologies (melting, non-melting, slow softening and stony hard) within six commercial cultivars and eight breeding selections of peach/nectarine in 2007. While in 2008, quality and sensorial analyses were conducted on only three commercial cultivars ('Big Top', 'Springcrest' and 'Ghiaccio 1'). The red flesh selection demonstrated the highest levels of phenolic compounds (in mesocarp/exocarp) and ascorbic acid. Total phenolic concentration was approximately three-fold higher in the exocarp than the mesocarp across all accessions. Breeding selections generally reported higher levels of phenolics than commercial cultivars. Flesh textural typologies justified firmness differences at harvest, but minimally addressed variations in quality and phenolic compounds. Flesh pigmentation explained variation in the biochemical composition, with the red flesh accession characterized by an abundancy of phenolic compounds and a high potential for elevated antioxidant activity. Sensorial analyses ranked the cultivar with high soluble solids concentration:titratable acidity (SSC:TA) and reduced firmness the highest overall. Red flesh is a highly desirable trait for breeding programs aiming to improve consumption of peaches selected for nutraceutical properties.

4.
Isotopes Environ Health Stud ; 42(2): 135-49, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16707315

RESUMEN

In the present study, rates of litter decomposition and microbial biomass nitrogen were monitored over an 8-month period in a young broadleaf plantation (18 y) and in an old floodplain forest. Moreover, delta13C and delta15N temporal variations within soil profiles were evaluated at both sites. Rates of litter decomposition were higher in spring and autumn than in summer, in both forests. At the end of the observation period the percentage of original litter remaining was not statistically different between the young and the old forest and accounted for 60-70% of the original amount. Microbial biomass nitrogen in the remaining litter and the percentage of litter mass lost during decomposition were positively correlated. The difference in litter quality affected the decomposition rate and also the changes in carbon isotopic composition during the decomposition process. In contrast, 15N isotopic signatures showed a similar trend in the litter of the two forests irrespective of the litter quality. Although delta13Csoil and delta15Nsoil showed considerable temporal variation they increased with depth in the soils of both sites but their seasonal changes did not reflect those of the decomposing litter. Within the same soil horizon, both delta13C and delta15N showed similar seasonal trends in the soils of the two forests, suggesting the involvement of environmental factors acting at regional level, such as soil temperature and rainfall variations, in regulating seasonal delta13C and delta15N soil variations.


Asunto(s)
Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Suelo/análisis , Árboles
5.
Physiol Plant ; 121(1): 58-65, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15086818

RESUMEN

The olive tree (Olea europaea L.) is commonly grown in the Mediterranean basin and is able to resist severe and prolonged drought. Levels of proline (PRO) and malondialdehyde (MDA), and the lipoxygenase (LOX) activity were determined in 2-year-old olive plants (cv. 'Coratina') grown in environmental conditions characterized by high temperatures and high photosynthetic photon flux density levels and gradually subjected to a controlled water deficit for 20 days. Before and during the experimental period, leaf and root samples were collected and analysed for PRO and MDA. The levels of PRO increased in parallel with the severity of drought stress in both leaves and roots. Significant increases of LOX activity and MDA content were also observed during the progressive increment of drought stress in both leaf and root tissues. Measurements of transpiration and photosynthetic rate, stomatal conductance and substomatal CO(2) concentration were carried out during the experiment. The accumulation of PRO indicates a possible role of PRO in drought tolerance. The increases of MDA content and LOX activity show that the water deficit is associated with lipid peroxidation mechanisms.

6.
J Biotechnol ; 159(4): 312-9, 2012 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21939695

RESUMEN

In apricot the bitter flavor of seeds is determined by the amount of amygdalin, a cyanogenic glucoside whose cleavage by endogenous enzymes, upon seed crushing, releases toxic hydrogen cyanide. The presence of such a poisonous compound is an obstacle to the use and commercialization of apricot seeds for human or animal nutrition. To investigate the genetic loci involved in the determination of the bitter phenotype a combined genetic and biochemical approach was used, involving a candidate gene analysis and a fine phenotyping via quantitative nuclear magnetic resonance, on an F1 apricot progeny. Seven functional markers were developed and positioned on the genetic maps of the parental lines Lito and BO81604311 and seven putative QTLs for the bitterness level were determined. In conclusion, this analysis has revealed some loci involved in the shaping of the bitterness degree; has proven the complexity of the bitter trait in apricot, reporting an high variance of the QTLs found over the years; has showed the critical importance of the phenotyping step, whose precision and accuracy is a pre-requisite when studying such a multifactorial character.


Asunto(s)
Genes de Plantas , Resonancia Magnética Nuclear Biomolecular/métodos , Prunus/genética , Sitios de Carácter Cuantitativo , Amigdalina/genética , Amigdalina/metabolismo , Análisis de Varianza , Mapeo Cromosómico , ADN de Plantas/análisis , Marcadores Genéticos/genética , Fenotipo , Prunus/química , Prunus/clasificación , Plantones , Gusto
7.
J Plant Physiol ; 168(13): 1543-9, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21507506

RESUMEN

Iron (Fe) chlorosis is a common nutritional deficiency in fruit trees grown in calcareous soils. Grafting on tolerant rootstocks is the most efficient practice to cope with it. In the present work, three Prunus hybrid genotypes, commonly used as peach rootstocks, and one peach cultivar were cultivated with bicarbonate in the growth medium. Parameters describing oxidative stress and the metabolism of reactive nitrogen species were studied. Lower contents of nitric oxide and a decreased nitrosoglutathione reductase activity were found in the most sensitive genotypes, characterized by higher oxidative stress and reduced antioxidant defense. In the peach cultivar, which behaved as a tolerant genotype, a specifically nitrated polypeptide was found.


Asunto(s)
Adaptación Fisiológica/fisiología , Bicarbonatos/farmacología , Hierro/metabolismo , Óxido Nítrico/metabolismo , Prunus/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Antioxidantes/metabolismo , Quimera , Clorofila/metabolismo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/metabolismo , Genotipo , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Deficiencias de Hierro , Estrés Oxidativo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Prunus/efectos de los fármacos , Prunus/genética , Especies Reactivas de Oxígeno/metabolismo , Suelo , Estrés Fisiológico
8.
Funct Plant Biol ; 32(1): 45-53, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32689110

RESUMEN

The effects of drought on the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), indoleacetate oxidase (IAAox) and polyphenol oxidase (PPO) were studied in 2-year old Olea europaea L. (cv. 'Coratina') plants grown under high temperatures and irradiance levels and gradually subjected to a controlled water deficit. After 20 d without irrigation, mean predawn leaf water potential fell from -0.37 to -5.37 MPa, and decreases in net photosynthesis and transpiration occurred. The activities of SOD, APX, CAT and POD increased in relation to the severity of drought stress in both leaves and roots. In particular, a marked increase in APX activity was found in leaves of plants at severe drought stress. CAT activity increased during severe water deficit conditions in leaves and fine roots. The patterns of POD and IAA oxidase activity ran in parallel and showed increases in relation to the degree of drought. In contrast, PPO activity decreased during the progression of stress in all the tissues studied. The results show that the ability of olive trees to up-regulate the enzymatic antioxidant system might be an important attribute linked to drought tolerance. This could limit cellular damage caused by active oxygen species during water deficit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA