Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Adv ; 9: 100310, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36321068

RESUMEN

We report wastewater surveillance of the spread of SARS-CoV-2 based upon 24-h composite influent samples taken weekly from four wastewater treatment plants (WWTP) on Vancouver Island, BC, Canada between January 3, 2021 and July 10, 2021. Samples were analyzed by reverse transcription quantitative polymerase chain reaction targeting the N1 and N2 gene fragments of SARS-CoV-2 and a region of the replication associate protein of the pepper mottle mosaic virus (PMMoV) serving as endemic control. Only a small proportion of samples had quantifiable levels of N1 or N2. Overall case rates are weakly correlated with the concentration (gene copies/L) and with the flux of viral material influent to the WWTP (gene copies/day); the latter accounts for influent flow variations. Poisson multimodal rank correlation accounts for differences between the four WWTP and shows a significant correlation with a significant positive intercept. Receiver operator characteristics (ROC) analysis confirms a cut-off of cases based on amplified/not-amplified experimental data. At the optimal cut point of 19 (N1) or 17 (N2) cases/week/100,000 the sensitivity and specificity is about 75% for N1 and 67% for N2.

2.
Biomolecules ; 11(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34439916

RESUMEN

Current treatments for neurodegenerative diseases aim to alleviate the symptoms experienced by patients; however, these treatments do not cure the disease nor prevent further degeneration. Improvements in current disease-modeling and drug-development practices could accelerate effective treatments for neurological diseases. To that end, 3D bioprinting has gained significant attention for engineering tissues in a rapid and reproducible fashion. Additionally, using patient-derived stem cells, which can be reprogrammed to neural-like cells, could generate personalized neural tissues. Here, adipose tissue-derived mesenchymal stem cells (MSCs) were bioprinted using a fibrin-based bioink and the microfluidic RX1 bioprinter. These tissues were cultured for 12 days in the presence of SB431542 (SB), LDN-193189 (LDN), purmorphamine (puro), fibroblast growth factor 8 (FGF8), fibroblast growth factor-basic (bFGF), and brain-derived neurotrophic factor (BDNF) to induce differentiation to dopaminergic neurons (DN). The constructs were analyzed for expression of neural markers, dopamine release, and electrophysiological activity. The cells expressed DN-specific and early neuronal markers (tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1), respectively) after 12 days of differentiation. Additionally, the tissues exhibited immature electrical signaling after treatment with potassium chloride (KCl). Overall, this work shows the potential of bioprinting engineered neural tissues from patient-derived MSCs, which could serve as an important tool for personalized disease models and drug-screening.


Asunto(s)
Bioimpresión/métodos , Fibrina/química , Células Madre Mesenquimatosas/citología , Tejido Nervioso/metabolismo , Impresión Tridimensional , Tejido Adiposo/metabolismo , Supervivencia Celular , Células Cultivadas , Dopamina/metabolismo , Diseño de Fármacos , Fibronectinas/química , Humanos , Hidrogeles , Enfermedades Neurodegenerativas/metabolismo , Neuronas/citología , Cloruro de Potasio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA