Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 45(12): 1862-1870, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549528

RESUMEN

The association of an active principle with a nanocarrier is known to improve its stability and protect it from external factors. Nevertheless, loading of nanoparticles with highly hydrophilic substances like caffeine remains a tricky issue. In the present study, inverse miniemulsion systems were successfully coupled to UV radiation to synthesize polymeric nanohydrogels for drug delivery. The proper choice of the continuous and dispersed phase chemical composition led to the entrapment of active principle into the miniemulsion droplets. Our confinement-based strategy enabled unprecedented caffeine encapsulation efficiency inside 100-nm particles. Dimensional, thermal, and spectroscopic characterizations were carried out to investigate both unloaded and loaded nanohydrogels. Furthermore, in vitro release studies evaluated caffeine release kinetics from nanohydrogels by means of dialysis tests. It was demonstrated that controlled and sustained release occurred within the first 50 hours. Experimental data were found to fit the Higuchi model suggesting that the active principle release is diffusion controlled.


Asunto(s)
Cafeína/administración & dosificación , Portadores de Fármacos/síntesis química , Composición de Medicamentos/métodos , Hidrogeles/síntesis química , Nanopartículas/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Polimerizacion , beta-Glucosidasa
2.
Biomater Adv ; 146: 213288, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731379

RESUMEN

Polymers have the potential to replace metallic or bioprosthetic heart valve components due to superior durability and inertness while allowing for native tissue-like flexibility. Despite these appealing properties, certain polymers such as polyetheretherketone (PEEK) have issues with hemocompatibility, which have previously been addressed through assorted complex processes. In this paper, we explore the enhancement of PEEK hemocompatibility with polymer crystallinity. Amorphous, semi-crystalline and crystalline PEEK are investigated in addition to a highly crystalline carbon fiber (CF)/PEEK composite material (CFPEEK). The functional group density of the PEEK samples is determined, showing that higher crystallinity results in increased amount of surface carbonyl functional groups. The increase of crystallinity (and negatively charged groups) appears to cause significant reductions in platelet adhesion (33 vs. 1.5 % surface coverage), hemolysis (1.55 vs. 0.75 %∙cm-2), and thrombin generation rate (4840 vs. 1585 mU/mL/min/cm2). In combination with the hemocompatibility study, mechanical characterization demonstrates that tailoring crystallinity is a simple and effective method to control both hemocompatibility and mechanical performance of PEEK. Furthermore, the results display that CFPEEK composite performed very well in all categories due to its enhanced crystallinity and complete carbon encapsulation, allowing the unique properties of CFPEEK to empower new concepts in cardiovascular device design.


Asunto(s)
Polietilenglicoles , Polímeros , Benzofenonas , Cetonas/química , Ensayo de Materiales , Polietilenglicoles/química , Polímeros/uso terapéutico , Vasos Sanguíneos/trasplante
3.
Pharmaceutics ; 11(8)2019 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-31405229

RESUMEN

In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.

4.
Polymers (Basel) ; 10(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30961017

RESUMEN

Flash nanoprecipitation (FNP) is a widely used technique to prepare particulate carriers based on various polymers, and it was proven to be a promising technology for the industrial production of drug loaded nanoparticles. However, up to now, only its application to hydrophobic compounds has been deeply studied and the encapsulation of some strongly hydrophilic compounds, such as caffeine, remains a challenge. Caffeine loaded poly-ε-caprolactone (PCL) nanoparticles were produced in a confined impinging jet mixer using acetone as the solvent and water as the antisolvent. Caffeine was dissolved either in acetone or in water to assess the effects of two different process conditions. Nanoparticles properties were assessed in terms of loading capacity (LC%), encapsulation efficiency (EE%), and in vitro release kinetics. Samples were further characterized by dynamic light scattering, scanning electron microscopy, X-ray photo electron spectroscopy, and infrared spectroscopy to determine the size, morphology, and structure of nanoparticles. FNP was proved an effective technique for entrapping caffeine in PCL and to control its release behavior. The solvent used to solubilize caffeine influences the final structure of the obtained particles. It was observed that the active principle was preferentially adsorbed at the surface when using acetone, while with water, it was embedded in the matrix structure. The present research highlights the possibility of extending the range of applications of FNP to hydrophilic molecules.

5.
J Funct Biomater ; 9(1)2017 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-29295545

RESUMEN

Drug delivery by means of transdermal patches raised great interest as a non-invasive and sustained therapy. The present research aimed to design a patch for transdermal delivery of melatonin, which was encapsulated in polycaprolactone (PCL) nanoparticles (NPs) by employing flash nanoprecipitation (FNP) technique. Melatonin-loaded PCL nanoparticles were successfully prepared with precise control of the particle size by effectively tuning process parameters. The effect of process parameters on the particle size was assessed by dynamic light scattering for producing particles with suitable size for transdermal applications. Quantification of encapsulated melatonin was performed by mean of UV spectrophotometry, obtaining the estimation of encapsulation efficiency (EE%) and loading capacity (LC%). An EE% higher than 80% was obtained. Differential scanning calorimetry (DSC) analysis of NPs was performed to confirm effective encapsulation in the solid phase. Cotton fabrics, functionalized by imbibition with the nano-suspension, were analyzed by scanning electron microscopy to check morphology, adhesion and distribution of the NPs on the surface; melatonin transdermal release from the functionalized fabric was performed via Franz's cells by using a synthetic membrane. NPs were uniformly distributed on cotton fibres, as confirmed by SEM observations; the release test showed a continuous and controlled release whose kinetics were satisfactorily described by Baker-Lonsdale model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA