Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Orthop Res ; 30(1): 122-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21710607

RESUMEN

A significant biochemical change that takes place in intervertebral disc degeneration is the loss of proteoglycans in the nucleus pulposus. Proteoglycans attract fluid, which works to reduce mechanical stresses in the solid matrix of the nucleus and provide a hydrostatic pressure to the annulus fibrosus, whose fibrous nature accommodates this stress. Our goals are to develop an osmo-poroelastic finite element model to study the relationship between proteoglycan content and the stress distribution within the disc and to analyze the effects of degeneration on the disc's diurnal mechanical response. Stress in the annulus increased with degeneration from ∼0.2 to 0.4 MPa, and an increase occurred in the center of the nucleus from 1.2 to 1.6 MPa. The osmotic pressure in the central nucleus region decreased the most with degeneration, from ∼0.42 to ∼0.1 MPa in a severely dehydrated disc. A 3% decrease in diurnal fluid lost with degeneration equated to ∼21% decrease in fluid exchange, and hence a decrease in nutrients that require convection to enter the disc. We quantified the increases in internal stresses in the nucleus and annulus throughout the various stages of degeneration, suggesting that these changes lead to further remodeling of the tissue.


Asunto(s)
Envejecimiento/fisiología , Ritmo Circadiano/fisiología , Análisis de Elementos Finitos , Degeneración del Disco Intervertebral/fisiopatología , Modelos Biológicos , Humanos , Disco Intervertebral/fisiología , Presión Osmótica/fisiología
2.
J Biomed Mater Res B Appl Biomater ; 90(2): 596-607, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19180527

RESUMEN

A simplified finite element model of the human lumbar intervertebral disc was utilized for understanding nucleus pulposus implant mechanics. The model was used to assess the effect of nucleus implant parameter variations on the resulting compressive biomechanics of the lumbar anterior column unit. The effects of nucleus implant material (modulus and Poisson's ratio) and geometrical (height and diameter) parameters on the mechanical behavior of the disc were investigated. The model predicted that variations in implant modulus contribute less to the compressive disc mechanics compared to the implant geometrical parameters, for the ranges examined. It was concluded that some threshold exists for the nucleus implant modulus, below which little variations in load-displacement behavior were shown. Compressive biomechanics were highly affected by implant volume (under-filling the nucleus cavity, line-to-line fit, or over-filling the nucleus cavity) with a greater restoration of compressive mechanics observed with the over-filled implant design. This work indicated the effect of nucleus implant parameter variations on the compressive mechanics of the human lumbar intervertebral disc and importance of the "fit and fill" effect of the nuclear cavity in the restoration of the human intervertebral disc mechanics in compression. These findings may have clinical significance for nucleus implant design.


Asunto(s)
Disco Intervertebral/patología , Vértebras Lumbares/patología , Anciano , Anisotropía , Huesos/patología , Fuerza Compresiva , Femenino , Análisis de Elementos Finitos , Humanos , Desplazamiento del Disco Intervertebral/patología , Masculino , Persona de Mediana Edad , Distribución de Poisson , Diseño de Prótesis , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA