Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Methods ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420141

RESUMEN

The understanding of the human brain is one of the main scientific challenges of the twenty-first century. In the early 2000s, the French Atomic Energy Commission launched a program to conceive and build a human magnetic resonance imaging scanner operating at 11.7 T. We have now acquired human brain images in vivo at such a magnetic field. We deployed parallel transmission tools to mitigate the radiofrequency field inhomogeneity problem and tame the specific absorption rate. The safety of human imaging at such high field strength was demonstrated using physiological, vestibular, behavioral and genotoxicity measurements on the imaged volunteers. Our technology yields T2 and T2*-weighted images reaching mesoscale resolutions within short acquisition times and with a high signal and contrast-to-noise ratio.

2.
Magn Reson Med ; 92(5): 2037-2050, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39054786

RESUMEN

PURPOSE: T 2 $$ {}_2 $$ -weighted turbo-spin-echo (TSE) sequences are a fundamental technique in brain imaging but suffer from field inhomogeneities at ultra-high fields. Several methods have been proposed to mitigate the problem, but were limited so far to nonselective three-dimensional (3D) measurements, making short acquisitions difficult to achieve when targeting very high resolution images, or needed additional calibration procedures, thus complicating their application. METHODS: Slab-selective excitation pulses were designed for flexible placement utilizing the concept of k T $$ {}_T $$ -spokes. Phase-coherent refocusing universal pulses were subsequently optimized with the Gradient Ascent Pulse Engineering algorithm and tested in vivo for improved signal homogeneity. RESULTS: Implemented within a 3D variable flip angle TSE sequence, these pulses led to a signal-to-noise ratio (SNR) improvement ranging from 10% to 30% compared to a two-dimensional (2D) T2w TSE sequence employing B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimmed pulses. B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneities could be mitigated and artifacts from B 0 $$ {\mathrm{B}}_0 $$ deviations reduced. The concept of universal pulses was successfully applied. CONCLUSION: We present a pulse design method which provides a set of calibration-free universal pulses (UPs) for slab-selective excitation and phase-coherent refocusing in slab-selective TSE sequences.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Relación Señal-Ruido , Humanos , Encéfalo/diagnóstico por imagen , Calibración , Fantasmas de Imagen , Ondas de Radio , Procesamiento de Imagen Asistido por Computador/métodos
3.
Magn Reson Med ; 91(4): 1608-1624, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102807

RESUMEN

PURPOSE: MP2RAGE parameter optimization is redefined to allow more time-efficient MR acquisitions, whereas the T1 -based synthetic imaging framework is used to obtain on-demand T1 -weighted contrasts. Our aim was to validate this concept on healthy volunteers and patients with multiple sclerosis, using plug-and-play parallel-transmission brain imaging at 7 T. METHODS: A "time-efficient" MP2RAGE sequence was designed with optimized parameters including TI and TR set as small as possible. Extended phase graph formalism was used to set flip-angle values to maximize the gray-to-white-matter contrast-to-noise ratio (CNR). Several synthetic contrasts (UNI, EDGE, FGATIR, FLAWSMIN , FLAWSHCO ) were generated online based on the acquired T1 maps. Experimental validation was performed on 4 healthy volunteers at various spatial resolutions. Clinical applicability was evaluated on 6 patients with multiple sclerosis, scanned with both time-efficient and conventional MP2RAGE parameterizations. RESULTS: The proposed time-efficient MP2RAGE protocols reduced acquisition time by 40%, 30%, and 19% for brain imaging at (1 mm)3 , (0.80 mm)3 and (0.65 mm)3 , respectively, when compared with conventional parameterizations. They also provided all synthetic contrasts and comparable contrast-to-noise ratio on UNI images. The flexibility in parameter selection allowed us to obtain a whole-brain (0.45 mm)3 acquisition in 19 min 56 s. On patients with multiple sclerosis, a (0.67 mm)3 time-efficient acquisition enhanced cortical lesion visualization compared with a conventional (0.80 mm)3 protocol, while decreasing the scan time by 15%. CONCLUSION: The proposed optimization, associated with T1 -based synthetic contrasts, enabled substantial decrease of the acquisition time or higher spatial resolution scans for a given time budget, while generating all typical brain contrasts derived from MP2RAGE.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología
4.
Magn Reson Med ; 90(2): 770-783, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36999747

RESUMEN

PURPOSE: Optimization of transmit array performance is crucial in ultra-high-field MRI scanners such as 11.7T because of the increased RF losses and RF nonuniformity. This work presents a new workflow to investigate and minimize RF coil losses, and to choose the optimum coil configuration for imaging. METHODS: An 8-channel transceiver loop-array was simulated to analyze its loss mechanism at 499.415 MHz. A folded-end RF shield was developed to limit radiation loss and improve the B 1 + $$ {B}_1^{+} $$ efficiency. The coil element length, and the shield diameter and length were further optimized using electromagnetic (EM) simulations. The generated EM fields were used to perform RF pulse design (RFPD) simulations under realistic constraints. The chosen coil design was constructed to demonstrate performance equivalence in bench and scanner measurements. RESULTS: The use of conventional RF shields at 11.7T resulted in significantly high radiation losses of 18.4%. Folding the ends of the RF shield combined with optimizing the shield diameter and length increased the absorbed power in biological tissue and reduced the radiation loss to 2.4%. The peak B 1 + $$ {B}_1^{+} $$ of the optimal array was 42% more than the reference array. Phantom measurements validated the numerical simulations with a close match of within 4% of the predicted B 1 + $$ {B}_1^{+} $$ . CONCLUSION: A workflow that combines EM and RFPD simulations to numerically optimize transmit arrays was developed. Results have been validated using phantom measurements. Our findings demonstrate the need for optimizing the RF shield in conjunction with array element design to achieve efficient excitation at 11.7T.


Asunto(s)
Cabeza , Ondas de Radio , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Diseño de Equipo , Neuroimagen
5.
Magn Reson Med ; 90(3): 1069-1085, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37213029

RESUMEN

PURPOSE: Non-Cartesian MRI with long arbitrary readout directions are susceptible to off-resonance artifacts due to patient induced B 0 $$ {B}_0 $$ inhomogeneities. This results in degraded image quality with strong signal losses and blurring. Current solutions to address this issue involve correcting the off-resonance artifacts during image reconstruction or reducing inhomogeneities through improved shimming. THEORY: The recently developed SPARKLING algorithm is extended to drastically diminish off-resonance artifacts by generating temporally smooth k-space sampling patterns. For doing so, the cost function which is optimized in SPARKLING is modified using a temporal weighting factor. Additionally, oversampling of the center of k-space beyond the Nyquist criteria is prevented through the use of gridded sampling in the region, enforced with affine constraints. METHODS: Prospective k-space data was acquired at 3 T on new trajectories, and we show robustness to B 0 $$ {\mathrm{B}}_0 $$ inhomogeneities through in silico experiments by adding Δ B 0 $$ \Delta {\mathrm{B}}_0 $$  through artificial degradation of system B 0 $$ {\mathrm{B}}_0 $$ shimming. Later on, in vivo experiments were carried out to optimize parameters of the new improvements and benchmark the gain in performance. RESULTS: The improved trajectories allowed for the recovery of signal dropouts observed on original SPARKLING acquisitions at larger B 0 $$ {\mathrm{B}}_0 $$ field inhomogeneities. Furthermore, imposing gridded sampling at the center of k-space provided improved reconstructed image quality with limited artifacts. CONCLUSION: These advancements allowed us for nearly 4 . 62 × $$ 4.62\times $$ shorter scan time compared to GRAPPA-p4x1, allowing us to reach 600 µm isotropic resolution in 3D T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ -w imaging in just 3.3 min at 3 T with negligible degradation in image quality.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Estudios Prospectivos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Fantasmas de Imagen
6.
Magn Reson Med ; 90(4): 1328-1344, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37246894

RESUMEN

PURPOSE: The acquisition of accurate B1 maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B1 maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs. In this work, we evaluated and improved the accuracy of the satTFL for cervical spine at 7 T, proposing a novel interferometric encoding optimization. The benefits of such improvements were investigated in an exploratory study of quantitative T1 mapping with pTx-MP2RAGE. METHODS: Global optimization of interferometric encoding was implemented by simulating the ability of the satTFL to reconstruct B1 maps, with varying encoding and inclusion of complex noise, inside a region of interest covering the cervical spine. The performance of satTFL before and after optimization was compared to actual flip angle imaging. Optimized and non-optimized B1 maps were then used to calculate pTx pulses for MP2RAGE T1 mapping. RESULTS: Interferometric encoding optimization resulted in satTFL closer to actual flip angle imaging, with substantial gain of signal in regions where non-optimized satTFL could fail. T1 maps measured with non-adiabatic pTx pulses were closer to standard non-pTx results (which used adiabatic pulses) when using optimized-satTFL, with substantially lower specific absorption rate. CONCLUSION: Optimization of the satTFL interferometric encoding improves B1 maps in the spinal cord, in particular in low SNR regions. A linear correction of the satTFL was additionally shown to be required. The method was successfully used for quantitative phantom and in vivo T1 mapping, showing improved results compared to non-optimized satTFL thanks to improved pTx-pulse generation.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Médula Espinal/diagnóstico por imagen
7.
Magn Reson Med ; 90(4): 1431-1445, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345701

RESUMEN

PURPOSE: Patient-induced inhomogeneities in the static magnetic field cause distortions and blurring (off-resonance artifacts) during acquisitions with long readouts such as in SWI. Conventional versatile correction methods based on extended Fourier models are too slow for clinical practice in computationally demanding cases such as 3D high-resolution non-Cartesian multi-coil acquisitions. THEORY: Most reconstruction methods can be accelerated when performing off-resonance correction by reducing the number of iterations, compressed coils, and correction components. Recent state-of-the-art unrolled deep learning architectures could help but are generally not adapted to corrupted measurements as they rely on the standard Fourier operator in the data consistency term. The combination of correction models and neural networks is therefore necessary to reduce reconstruction times. METHODS: Hybrid pipelines using UNets were trained stack-by-stack over 99 SWI 3D SPARKLING 20-fold accelerated acquisitions at 0.6 mm isotropic resolution using different off-resonance correction methods. Target images were obtained using slow model-based corrections based on self-estimated Δ B 0 $$ \Delta {B}_0 $$ field maps. The proposed strategies, tested over 11 volumes, are compared to model-only and network-only pipelines. RESULTS: The proposed hybrid pipelines achieved scores competing with two to three times slower baseline methods, and neural networks were observed to contribute both as pre-conditioner and through inter-iteration memory by allowing more degrees of freedom over the model design. CONCLUSION: A combination of model-based and network-based off-resonance correction was proposed to significantly accelerate conventional methods. Different promising synergies were observed between acceleration factors (iterations, coils, correction) and model/network that could be expanded in the future.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo , Redes Neurales de la Computación , Algoritmos
8.
Eur J Neurosci ; 55(2): 438-460, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939245

RESUMEN

We present a new consensus atlas of deep grey nuclei obtained by shape-based averaging of manual segmentation of two experienced neuroradiologists and optimized from 7T MP2RAGE images acquired at (.6 mm)3 in 60 healthy subjects. A group-wise normalization method was used to build a high-contrast and high-resolution T1 -weighted brain template (.5 mm)3 using data from 30 out of the 60 controls. Delineation of 24 deep grey nuclei per hemisphere, including the claustrum and 12 thalamic nuclei, was then performed by two expert neuroradiologists and reviewed by a third neuroradiologist according to tissue contrast and external references based on the Morel atlas. Corresponding deep grey matter structures were also extracted from the Morel and CIT168 atlases. The data-derived, Morel and CIT168 atlases were all applied at the individual level using non-linear registration to fit the subject reference and to extract absolute mean quantitative T1 values derived from the 3D-MP2RAGE volumes, after correction for residual B1+ biases. Three metrics (the Dice and the volumetric similarity coefficients and a novel Hausdorff distance) were used to estimate the inter-rater agreement of manual MRI segmentation and inter-atlas variability, and these metrics were measured to quantify biases due to image registration, and their impact on the measurements of the quantitative T1 values was highlighted. This represents a fully automated segmentation process permitting the extraction of unbiased normative T1 values in a population of young healthy controls as a reference for characterizing subtle structural alterations of deep grey nuclei relevant to a range of neurological diseases.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Núcleos Talámicos
9.
Magn Reson Med ; 87(6): 2839-2850, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35122302

RESUMEN

PURPOSE: In parallel transmission (pTX), subject-tailored RF pulses allow achieving excellent flip angle (FA) accuracy but often require computationally extensive online optimizations, precise characterization of the static field ( ΔB0 ), and the transmit RF field ( B1+ ) distributions. This costs time and requires expertise from the MR user. Universal pulses (UPs) have been proposed to reduce this burden, yet, with a penalty in FA accuracy. This study introduces the concept of standardized universal pulses (SUPs), where pulses are designed offline and adjusted to the subject through a fast online calibration scan. METHODS: A SUP is designed offline using a so-called standardized database, wherein each B1+ map has been normalized to a reference transmit RF field distribution. When scanning a new subject, a 3-slice B1+ acquisition (scan time <10  s) is performed and used to adjust the SUP to the subject through a linear transform. SUP performance was assessed at 7T with simulations by computing the FA-normalized root mean square error (FA-NRMSE) and the FA pattern stability as measured by the average and coefficient of variation of the FA across 15 control subjects, along with in vivo experiments using an MP2RAGE sequence implementing the SUP variant for the FLASH readout. RESULTS: Adjusted SUP improved the FA-NRMSE (8.8 % for UP vs. 7.1 % for adjusted SUP). Experimentally in vivo, this translated in an improved signal homogeneity and more accurate T1 quantification using MP2RAGE. CONCLUSION: The proposed SUP approach improves excitation accuracy (FA-NRMSE) while preserving the same offline pulse design principle as offered by UPs.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo , Calibración , Bases de Datos Factuales , Humanos , Fantasmas de Imagen , Ondas de Radio
10.
Magn Reson Med ; 88(4): 1592-1607, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735217

RESUMEN

PURPOSE: Patient-induced inhomogeneities in the magnetic field cause distortions and blurring during acquisitions with long readouts such as in susceptibility-weighted imaging (SWI). Most correction methods require collecting an additional ΔB0$$ \Delta {\mathrm{B}}_0 $$ field map to remove these artifacts. THEORY: The static ΔB0$$ \Delta {\mathrm{B}}_0 $$ field map can be approximated with an acceptable error directly from a single echo acquisition in SWI. The main component of the observed phase is linearly related to ΔB0$$ \Delta {\mathrm{B}}_0 $$ and the echo time (TE), and the relative impact of non- ΔB0$$ \Delta {\mathrm{B}}_0 $$ terms becomes insignificant with TE$$ \mathrm{TE} $$ >20 ms at 3 T for a well-tuned system. METHODS: The main step is to combine and unfold the multi-channel phase maps wrapped many times, and several competing algorithms are compared for this purpose. Four in vivo brain data sets collected using the recently proposed 3D spreading projection algorithm for rapid k-space sampling (SPARKLING) readouts are used to assess the proposed method. RESULTS: The estimated 3D field maps generated with a 0.6 mm isotropic spatial resolution provide overall similar off-resonance corrections compared to reference corrections based on an external ΔB0$$ \Delta {\mathrm{B}}_0 $$ acquisitions, and even improved for 2 of 4 individuals. Although a small estimation error is expected, no aftermath was observed in the proposed corrections, whereas degradations were observed in the references. CONCLUSION: A static ΔB0$$ \Delta {\mathrm{B}}_0 $$ field map estimation method was proposed to take advantage of acquisitions with long echo times, and outperformed the reference technique based on an external field map. The difference can be attributed to an inherent robustness to mismatches between volumes and external ΔB0$$ \Delta {\mathrm{B}}_0 $$ maps, and diverse other sources investigated.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
11.
Neuroimage ; 205: 116275, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618700

RESUMEN

T1 mapping lacks specificity toward a single particular biological feature, however it has the potential to discriminate spinal cord regional tissue organization and characterize tissue microstructural impairments occurring in neurodegenerative pathologies. In this exploratory work, T1 mapping of the cervical spinal cord with a 300-µm in-plane resolution was performed on fourteen healthy subjects at 7T, using the MP2RAGE sequence. Individual images from C1 to C7 vertebral levels provided a clear delineation of spinal cord anatomical details and substructures including motor columns within gray matter (GM) horns, anterior median fissure, central canal, ventral, lateral and dorsal white matter (WM) fasciculi, and posterior median septum. Group studies highlighted regional T1 differences between regions of interest so far hardly visible at lower spatial resolution. Two-dimensional averaged T1 maps and manual parcellation of GM and WM substructures were built based on these data. Benefiting from the very high spatial resolution achievable at ultra-high field for T1 mapping, this work contributes to improve the in vivo characterization of the cervical spinal cord. By allowing investigation within a wider range of functional regions, it also opens new perspectives for pathology diagnosis such as motor neuron disease, neuropathic pain or refined investigation of neurodegeneration.


Asunto(s)
Médula Cervical/anatomía & histología , Sustancia Gris/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Médula Cervical/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador/normas , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/normas , Masculino , Neuroimagen/instrumentación , Neuroimagen/normas , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
12.
Magn Reson Med ; 84(3): 1198-1217, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32057128

RESUMEN

PURPOSE: To develop a noninvasive technique to map human spinal cord (SC) perfusion in vivo. More specifically, to implement an intravoxel incoherent motion (IVIM) protocol at ultrahigh field for the human SC and assess parameters estimation errors. METHODS: Monte-Carlo simulations were conducted to assess estimation errors of 2 standard IVIM fitting approaches (two-step versus one-step fit) over the range of IVIM values reported for the human brain and for typical SC diffusivities. Required signal-to-noise ratio (SNR) was inferred for estimation of the parameters product, fIVIM D* (microvascular fraction times pseudo-diffusion coefficient), within 10% error margins. In-vivo IVIM imaging of the SC was performed at 7T in 6 volunteers. An image processing pipeline is proposed to generate IVIM maps and register them for an atlas-based region-wise analysis. RESULTS: Required b = 0 SNRs for 10% error estimation on fIVIM D* with the one-step fit were 159 and 185 for diffusion-encoding perpendicular and parallel to the SC axis, respectively. Average in vivo b = 0 SNR within cord was 141 ± 79, corresponding to estimation errors of 12.7% and 14.7% according to numerical simulations. Slice- and group-averaging reduced noise in IVIM maps, highlighting the difference in perfusion between gray and white matter. Mean ± standard deviation fIVIM and D* values across subjects within gray (respectively white) matter were 16.0 ± 1.7 (15.0 ± 1.6)% and 11.4 ± 2.9 (11.5 ± 2.4) × 10-3 mm2 /s. CONCLUSION: Single-subject data SNR at 7T was insufficient for reliable perfusion estimation. However, atlas-averaged IVIM maps highlighted the higher microvascular fraction of gray matter compared to white matter, providing first results of healthy human SC perfusion mapping with MRI.


Asunto(s)
Algoritmos , Imagen de Difusión por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador , Movimiento (Física) , Perfusión , Médula Espinal/diagnóstico por imagen
13.
NMR Biomed ; 33(9): e4349, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32613699

RESUMEN

We have recently proposed a new optimization algorithm called SPARKLING (Spreading Projection Algorithm for Rapid K-space sampLING) to design efficient compressive sampling patterns for magnetic resonance imaging (MRI). This method has a few advantages over conventional non-Cartesian trajectories such as radial lines or spirals: i) it allows to sample the k-space along any arbitrary density while the other two are restricted to radial densities and ii) it optimizes the gradient waveforms for a given readout time. Here, we introduce an extension of the SPARKLING method for 3D imaging by considering both stacks-of-SPARKLING and fully 3D SPARKLING trajectories. Our method allowed to achieve an isotropic resolution of 600 µm in just 45 seconds for T2∗-weighted ex vivo brain imaging at 7 Tesla over a field-of-view of 200 × 200 × 140 mm3 . Preliminary in vivo human brain data shows that a stack-of-SPARKLING is less subject to off-resonance artifacts than a stack-of-spirals.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Animales , Humanos , Papio
14.
NMR Biomed ; 32(11): e4142, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31393649

RESUMEN

The recently-proposed MP2RAGE sequence was purposely optimized for cervical spinal cord imaging at 3T. Sequence parameters were chosen to optimize gray/white matter T1 contrast with sub-millimetric resolution and scan-time < 10 min while preserving reliable T1 determination with minimal B1+ variation effects within a range of values compatible with pathologies and surrounding structures. Results showed good agreements with IR-based measurements, high MP2RAGE-based T1 reproducibility and preliminary evidences of age- and tract-related T1 variations in the healthy spinal cord.


While T1 measurements present multiple challenges (robustness, acquisition time), the recently proposed MP2RAGE sequence (magnetization-prepared two rapid acquisition gradient echoes) has opened new perspectives to characterize tissue microstructure changes occurring in a pathological or developmental context. Extensively used for brain studies, it was herein adapted to investigate the cervical spinal cord (SC) at 3 T. By integrating Bloch equations, the MP2RAGE sequence parameters were chosen to optimize SC gray matter/white matter (GM/WM) T1 contrast with sub-millimetric resolution, a scan time less than 10 min and a reliable T1 determination with minimal B1+ variation effect, within a range of values compatible with different pathologies and surrounding structures. The residual B1+ effect on T1 values was corrected using a look-up-table approach and B1+ mapping. The accuracy of B1+ -corrected T1 measurements was assessed on a phantom with respect to conventional inversion recovery. In vivo MP2RAGE acquisitions were performed on five young (28.8 ± 4.3 years old) and five elderly (60.2 ± 2.9 years old) volunteers and analyzed using a template-based approach. Phantom experiments led to high agreements between inversion-recovery spin-echo and MP2RAGE-based T1 values (R2  = 0.997). In vivo T1 values for cervical WM, anterior GM (aGM), posterior sensory tracts (PSTs) and lateral motor tracts (LMTs) were 917 ± 29 s, 934 ± 33 ms, 920 ± 37 ms and 877 ± 35 ms, respectively, with all subjects and cervical levels considered. Significant differences were observed between aGM and LMTs, and between LMTs and PSTs, in agreement with the literature. Repeated T1 measurements demonstrated high reproducibility of the MP2RAGE in the SC (variation coefficient < 5% in all regions of interest). Finally, preliminary assessment of age-related SC tissue microstructure variation additionally showed evidence of SC atrophy and slight trends of T1 decrease with age in all regions. Overall, this study shows that fast, robust and accurate sub-millimetric resolution T1 mapping in the cervical SC using the MP2RAGE sequence is possible, paving the way for future multi-centric and longitudinal clinical studies investigating the pathological cord.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Simulación por Computador , Humanos , Persona de Mediana Edad , Fantasmas de Imagen , Reproducibilidad de los Resultados
15.
Neuroimage ; 143: 58-69, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27574985

RESUMEN

Quantitative MRI techniques have the potential to characterize spinal cord tissue impairments occurring in various pathologies, from both microstructural and functional perspectives. By enabling very high image resolution and enhanced tissue contrast, ultra-high field imaging may offer further opportunities for such characterization. In this study, a multi-parametric high-resolution quantitative MRI protocol is proposed to characterize in vivo the human cervical spinal cord at 7T. Multi-parametric quantitative MRI acquizitions including T1, T2* relaxometry mapping and axial diffusion MRI were performed on ten healthy volunteers with a whole-body 7T system using a commercial prototype coil-array dedicated to cervical spinal cord imaging. Automatic cord segmentation and multi-parametric data registration to spinal cord templates enabled robust regional studies within atlas-based WM tracts and GM horns at the C3 cervical level. T1 value, cross-sectional area and GM/WM ratio evolutions along the cervical cord were also reported. An original correction method for B1+-biased T1 mapping sequence was additionally proposed and validated on phantom. As a result, relaxometry and diffusion parameters derived from high-resolution quantitative MRI acquizitions were reported at 7T for the first time. Obtained images, with unmatched resolutions compared to lower field investigations, provided exquisite anatomical details and clear delineation of the spinal cord substructures within an acquisition time of 30min, compatible with clinical investigations. Regional statistically significant differences were highlighted between WM and GM based on T1 and T2* maps (p<10-3), as well as between sensory and motor tracts based on diffusion tensor imaging maps (p<0.05). The proposed protocol demonstrates that ultra-high field spinal cord high-resolution quantitative MRI is feasible and lays the groundwork for future clinical investigations of degenerative spinal cord pathologies.


Asunto(s)
Médula Cervical/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Médula Cervical/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Adulto Joven
16.
Magn Reson Med ; 73(6): 2195-203, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25046558

RESUMEN

PURPOSE: A promise of ultra high field MRI is to produce images of the human brain with higher spatial resolution due to an increased signal to noise ratio. Yet, the shorter radiofrequency wavelength induces an inhomogeneous distribution of the transmit magnetic field and thus challenges the applicability of MRI sequences which rely on the spin excitation homogeneity. In this work, the ability of parallel-transmission to obtain high-quality T2 -weighted images of the human brain at 7 Tesla, using an original pulse design method is evaluated. METHODS: Excitation and refocusing square pulses of a SPACE sequence were replaced with short nonselective transmit-SENSE pulses individually tailored with the gradient ascent pulse engineering algorithm, adopting a kT -point trajectory to simultaneously mitigate B1 (+) and ΔB0 nonuniformities. RESULTS: In vivo experiments showed that exploiting parallel-transmission at 7T with the proposed methodology produces high quality T2 -weighted whole brain images with uniform signal and contrast. Subsequent white and gray matter segmentation confirmed the expected improvements in image quality. CONCLUSION: This work demonstrates that the adopted formalism based on optimal control, combined with the kT -point method, successfully enables three-dimensional T2 -weighted brain imaging at 7T devoid of artifacts resulting from B1 (+) inhomogeneity.


Asunto(s)
Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
17.
NMR Biomed ; 28(1): 101-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25388870

RESUMEN

An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal.


Asunto(s)
Temperatura Corporal , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar , Termometría/métodos , Animales , Masculino , Papio , Fantasmas de Imagen
18.
Magn Reson Med ; 72(3): 679-88, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24155266

RESUMEN

PURPOSE: To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. METHODS: The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. RESULTS: The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. CONCLUSION: Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity.


Asunto(s)
Cabeza/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Humanos , Ondas de Radio , Procesamiento de Señales Asistido por Computador , Temperatura
20.
Invest Radiol ; 58(5): 337-345, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730698

RESUMEN

OBJECTIVES: The precise location of multiple sclerosis (MS) cortical lesions can be very challenging at 3 T, yet distinguishing them from subcortical lesions is essential for the diagnosis and prognosis of the disease. Compressed sensing-accelerated fluid and white matter suppression imaging (CS-FLAWS) is a new magnetic resonance imaging sequence derived from magnetization-prepared 2 rapid acquisition gradient echo with promising features for the detection and classification of MS lesions. The objective of this study was to compare the diagnostic performances of CS-FLAWS (evaluated imaging) and phase sensitive inversion recovery (PSIR; reference imaging) for classification of cortical lesions (primary objective) and infratentorial lesions (secondary objective) in MS, in combination with 3-dimensional (3D) double inversion recovery (DIR). MATERIALS AND METHODS: Prospective 3 T scans (MS first diagnosis or follow-up) acquired between March and August 2021 were retrospectively analyzed. All underwent 3D CS-FLAWS, axial 2D PSIR, and 3D DIR. Double-blinded reading sessions exclusively in axial plane and final consensual reading were performed to assess the number of cortical and infratentorial lesions. Wilcoxon test was used to compare the 2 imaging datasets (FLAWS + DIR and PSIR + DIR), and intraobserver and interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS: Forty-two patients were analyzed (38 with relapsing-remitting MS, 29 women, 42.7 ± 12.6 years old). Compressed sensing-accelerated FLAWS allowed the identification of 263 cortical lesions versus 251 with PSIR ( P = 0.74) and 123 infratentorial lesions versus 109 with PSIR ( P = 0.63), corresponding to a nonsignificant difference between the 2 sequences. Compressed sensing-accelerated FLAWS exhibited fewer false-negative findings than PSIR either for cortical lesions (1 vs 13; P < 0.01) or infratentorial lesions (1 vs 15; P < 0.01). No false-positive findings were found with any of the 2 sequences. Diagnostic confidence was high for each contrast. CONCLUSION: Three-dimensional CS-FLAWS is as accurate as 2D PSIR imaging for classification of cortical and infratentorial MS lesions, with fewer false-negative findings, opening the way to a reliable full brain MS exploration in a clinically acceptable duration (5 minutes 15 seconds).


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Humanos , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Retrospectivos , Estudios Prospectivos , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA