Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232456

RESUMEN

KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/-) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/- mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.


Asunto(s)
Insulinas , Factor 2 Relacionado con NF-E2 , Animales , Antioxidantes , Glucosa , Glucógeno , Proteína KRIT1 , Hígado , Ratones , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética
2.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158345

RESUMEN

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Timina ADN Glicosilasa/metabolismo , Animales , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inhibidores , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
3.
Pediatr Blood Cancer ; 67(3): e28106, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31820553

RESUMEN

BACKGROUND: Among survivors of pediatric acute lymphoblastic leukemia (ALL), those who received hematopoietic stem cell transplantation (HSCT) conditioned with total-body irradiation (TBI) show the highest risk of late complications, including cardiovascular (CV) disease. Advanced glycation end products (AGEs) have been associated with CV disease in diabetes mellitus and other clinical conditions. This study explores AGEs plasma levels, inflammatory status, and lipid profile in survivors of pediatric ALL who received HSCT conditioned with TBI. PROCEDURE: Inclusion criteria were (a) previous diagnosis of ALL at age < 18 years, treated with HSCT conditioned with TBI; (b) age > 18 at the time of the study enrollment; (c) off-therapy for at least five years. Radiotherapy other than TBI, preexisting heart disease, glucose metabolism impairment, body mass index > 25, active graft versus host disease (GvHD), smoking, or treatment with cholesterol lowering medications were exclusion criteria. Eighteen survivors and 30 age-matched healthy controls were enrolled. RESULTS: AGEs plasma levels were markedly higher in ALL survivors than in healthy subjects (2.15 ± 2.21 vs 0.29 ± 0.15 pg/mL, P < 0.01). Survivors also showed higher levels of high-sensitivity C-reactive protein (2.32 ± 1.70 vs 0.88 ± 1.09 mg/dL, P < 0.05), IL-1ß (7.04 ± 1.52 vs 4.64 ± 2.02 pg/mL, P < 0.001), IL17 (37.44 ± 3.51 vs 25.19 ± 6.34 pg/mL, P < 0.001), an increased glutathione/reduced glutathione ratio (0.085 ± 0.07 vs 0.041 ± 0.036, P < 0.05) and slight alterations in their lipid profile. CONCLUSIONS: Our data show AGEs accumulation and chronic inflammation in ALL survivors who received HSCT conditioned with TBI. These alterations may contribute to the increased risk of CV disease reported in these subjects.


Asunto(s)
Biomarcadores/sangre , Supervivientes de Cáncer/estadística & datos numéricos , Productos Finales de Glicación Avanzada/sangre , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inflamación/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Irradiación Corporal Total/efectos adversos , Adulto , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Estudios de Casos y Controles , Niño , Enfermedad Crónica , Femenino , Estudios de Seguimiento , Humanos , Inflamación/sangre , Inflamación/etiología , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Adulto Joven
4.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590384

RESUMEN

Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Endotelio Vascular/metabolismo , Proteína KRIT1/genética , Mutación con Pérdida de Función , Animales , Aorta/patología , Apoptosis , Aterosclerosis/metabolismo , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Proteína KRIT1/deficiencia , Proteína KRIT1/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptor Notch1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Kidney Int ; 94(2): 252-258, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29706358

RESUMEN

The endogenous cannabinoids anandamide and 2-arachidonoylglycerol bind to the cannabinoid receptors of type 1 and 2. These receptors are also the binding sites for exogenous, both natural and synthetic, cannabinoids that are used for recreation purposes. Until recently, cannabinoids and cannabinoid receptors have attracted little interest among nephrologists; however, a full endocannabinoid system (ECS) is present in the kidney and it has recently emerged as an important player in the pathogenesis of diabetic nephropathy, drug nephrotoxicity, and progressive chronic kidney disease. This newly established role of the ECS in the kidney might have therapeutic relevance, as pharmacological modulation of the ECS has renoprotective effects in experimental animals, raising hope for future potential applications in humans. In addition, over the last years, there has been a number of reported cases of acute kidney injury (AKI) associated with the use of synthetic cannabinoids that appear to have higher potency and rate of toxicity than natural Cannabis. This poorly recognized cause of renal injury should be considered in the differential diagnosis of AKI, particularly in young people. In this review we provide an overview of preclinical evidence indicating a role of the ECS in renal disease and discuss potential future therapeutic applications. Moreover, we give a critical update of synthetic cannabinoid-induced AKI.


Asunto(s)
Lesión Renal Aguda/etiología , Endocannabinoides/metabolismo , Riñón/patología , Receptores de Cannabinoides/metabolismo , Insuficiencia Renal Crónica/etiología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Antagonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Receptores de Cannabinoides/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Transducción de Señal/efectos de los fármacos
6.
Anal Bioanal Chem ; 410(11): 2723-2737, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29516133

RESUMEN

This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.


Asunto(s)
Azúcares de la Dieta/metabolismo , Fructosa/metabolismo , Metaboloma , Metabolómica/métodos , Orina/química , Animales , Azúcares de la Dieta/orina , Fructosa/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Eur J Nutr ; 56(1): 363-373, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26487451

RESUMEN

PURPOSE: In recent years, the increasing consumption of soft drinks containing high-fructose corn syrup or sucrose has caused a rise in fructose intake, which has been related to the epidemic of metabolic diseases. As fructose and glucose intake varies in parallel, it is still unclear what the effects of the increased consumption of the two single sugars are. In the present study, the impact of chronic consumption of glucose or fructose on skeletal muscle of healthy mice was investigated. METHODS: C57BL/6J male mice received water (C), 15 % fructose (ChF) or 15 % glucose (ChG) to drink for up to 7 months. Lipid metabolism and markers of inflammation and autophagy were assessed in gastrocnemius muscle. RESULTS: Increased body weight and gastrocnemius muscle mass, as well as circulating glucose, insulin, and lipid plasma levels were observed in sugar-drinking mice. Although triglycerides increased in the gastrocnemius muscle of both ChF and ChG mice (+32 and +26 %, vs C, respectively), intramyocellular lipids accumulated to a significantly greater extent in ChF than in ChG animals (ChF +10 % vs ChG). Such perturbations were associated with increased muscle interleukin-6 levels (threefold of C) and with the activation of autophagy, as demonstrated by the overexpression of LC3B-II (ChF, threefold and ChG, twofold of C) and beclin-1 (ChF, sevenfold and ChG, tenfold of C). CONCLUSIONS: The present results suggest that intramyocellular lipids and the pro-inflammatory signaling could contribute to the onset of insulin resistance and lead to the induction of autophagy, which could be an adaptive response to lipotoxicity.


Asunto(s)
Autofagia , Fructosa/efectos adversos , Glucosa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Beclina-1/genética , Beclina-1/metabolismo , Glucemia/metabolismo , Colesterol/sangre , Modelos Animales de Enfermedad , Fibrinógeno/genética , Fibrinógeno/metabolismo , Fructosa/administración & dosificación , Glucosa/administración & dosificación , Insulina/sangre , Resistencia a la Insulina , Interleucina-6/sangre , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/sangre , Proteína 3 Supresora de la Señalización de Citocinas/genética , Triglicéridos/sangre
8.
Int J Mol Sci ; 18(12)2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29240668

RESUMEN

Heat shock proteins (HSPs) are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.


Asunto(s)
Biomarcadores/metabolismo , Angiopatías Diabéticas/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamación/metabolismo , Animales , Apoptosis , Angiopatías Diabéticas/patología , Humanos , Inflamación/patología , Modelos Biológicos , Isoformas de Proteínas/metabolismo
9.
Neurobiol Dis ; 89: 65-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26851500

RESUMEN

Several studies indicate the involvement of advanced glycation end-products (AGEs) in neurodegenerative diseases. Moreover, the rising consumption of fructose in industrialized countries has been related to cognitive impairment, but the impact of fructose-derived AGEs on hippocampus has never been investigated. The present study aimed to evaluate in the hippocampus of C57Bl/6 mice fed a standard (SD) or a 60% fructose (HFRT) diet for 12 weeks the production of the most studied AGEs, carboxy methyllysine (CML), focusing on the role of the glutathione-dependent enzyme glyoxalase (Glo-1), the main AGEs-detoxifying system, in relation to early signs of neuronal impairment. HFRT diet evoked CML accumulation in the cell body of pyramidal neurons, followed by RAGE/NFkB signaling activation. A widespread reactive gliosis and altered mitochondrial respiratory complexes activity have been evidenced in HFRT hippocampi, paralleled by oxidative stress increase due to impaired activity of Nrf2 signaling. In addition, a translocation of Glo-1 from axons toward cell body of pyramidal neurons has been observed in HFRT mice, in relation to CML accumulation. Despite increased expression of dimeric Glo-1, its enzymatic activity was not upregulated in HFRT hippocampi, due to reduced glutathione availability, thus failing to prevent CML accumulation. The prevention of CML production by administration of the specific inhibitor pyridoxamine was able to prevent all the fructose-induced hippocampal alterations. In conclusion, a high-fructose consumption, through CML accumulation and Glo-1 impairment, induces in the hippocampus the same molecular and metabolic alterations observed in early phases of neurodegenerative diseases, and can thus represent a risk factor for their onset.


Asunto(s)
Fructosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hipocampo/metabolismo , Células Piramidales/metabolismo , Animales , Dieta , Gliosis/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Factores de Riesgo
10.
Mol Med ; 21(1): 1025-1037, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26623925

RESUMEN

Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic downregulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3-/- littermates were fed control diet or high-fat, high-fructose diet (HD). A subgroup of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg intraperitoneally [IP]). HD feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in profibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3-/- mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin (IL)-1ß and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited nuclear factor (NF)-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing.

11.
J Pharmacol Exp Ther ; 359(1): 45-53, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27440421

RESUMEN

The aim of this study was to evaluate the effects of chronic treatment with empagliflozin, a potent and selective sodium glucose cotransporter-2 inhibitor, in a murine model of diet-induced obesity and insulin resistance, focusing on drug effects on body weight reduction and nucleotide-binding domain, leucine-rich repeat containing protein (NLRP)-3 inflammasome activation, which have never been investigated to date. Male C57BL/6 mice were fed control or a high fat-high sugar (HFHS) diet for 4 months. Over the last 2 months, subsets of animals were treated with empagliflozin (1-10 mg/kg) added to the diet. Empagliflozin evoked body weight reduction (P < 0.001 for the highest dose) and positive effects on fasting glycemia and homeostasis model assessment of insulin resistance. In addition, the drug was able to reduce renal tubular damage and liver triglycerides level in a dose-dependent manner. Interestingly, empagliflozin also decreased cardiac lipid accumulation. Moreover, diet-induced activation of NLRP-3 in kidney and liver (not observed in the heart) was dose-dependently attenuated by empagliflozin. Our results clearly demonstrate the ability of empagliflozin to counteract the deleterious effects evoked by chronic exposure to HFHS diet. Most notably, empagliflozin treatment was associated with NLRP-3 inflammasome signaling modulation, suggesting that this inhibition may contribute to the drug therapeutic effects.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Dieta/efectos adversos , Glucósidos/farmacología , Inflamasomas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Animales , Compuestos de Bencidrilo/uso terapéutico , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Ayuno/sangre , Prueba de Tolerancia a la Glucosa , Glucósidos/uso terapéutico , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
12.
Clin Sci (Lond) ; 130(2): 117-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26519424

RESUMEN

Catecholamines trigger proximal tubular fluid retention and reduce renal excretion of solute-free water. In advanced cirrhosis, non-osmotic hypersecretion of vasopressin (antidiuretic hormone or ADH) is considered the cause of dilutional hyponatraemia, but ADH V2 receptor antagonists are not beneficial in long-term treatment of ascites. To test the hypothesis that water retention in experimental ascitic cirrhosis might depend primarily on adrenergic hyper-function, hormonal status, renal function and tubular free-water reabsorption (TFWR) were assessed in six groups of rats with ascitic cirrhosis: rats with cirrhosis due to 13-week CCl4 (carbon tetrachloride) administration (group G1); cirrhotic rats receiving daily diuretics (0.5 mg/kg furosemide plus 2 mg/kg K(+)-canrenoate) from the 11th to the 13th week of CCl4 (G2), diuretics associated with guanfacine oral prodrug (α2A-adrenergic receptor agonist and sympatholytic agent) at 2 (G3), 7 (G4) or 10 (G5) mg/kg, or with SSP-004240F1 (V2 receptor antagonist) at 1 mg/kg (G6). Natriuresis was lower in G1 than in G2, G4 and G6 (all P<0.05). Guanfacine, added to diuretics (i.e. G3 compared with G2), reduced serum noradrenaline from 423±22 to 211±41 ng/l (P<0.05), plasma renin activity (PRA) from 35±8 to 9±2 ng/ml/h (P<0.05) and TFWR from 45±8 to 20±6 µl/min (P<0.01). TFWR correlated with plasma aldosterone (r=0.51, P<0.01) and urinary potassium excretion (r=0.90, P<0.001). In ascitic cirrhosis, reduced volaemia, use of diuretics (especially furosemide) and adrenergic hyper-function cause tubular retention of water. Suitable doses of sympatholytic agents are effective aquaretics.


Asunto(s)
Ascitis/fisiopatología , Cirrosis Hepática Experimental/fisiopatología , Vasopresinas/fisiología , Animales , Ascitis/tratamiento farmacológico , Ascitis/etiología , Ácido Canrenoico/farmacología , Diuréticos/farmacología , Furosemida/farmacología , Guanfacina/farmacología , Hiponatremia/etiología , Hiponatremia/fisiopatología , Cirrosis Hepática Experimental/complicaciones , Masculino , Natriuresis/efectos de los fármacos , Natriuresis/fisiología , Norepinefrina/sangre , Ratas , Ratas Wistar , Vasopresinas/antagonistas & inhibidores
13.
Liver Int ; 36(2): 205-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26121993

RESUMEN

BACKGROUND & AIMS: Sympathetic nervous system (SNS) activation decreases response to diuretics, but both α1-adrenoceptor agonists and sympatholytic α2-adrenoceptor agonists are recommended in the management of ascitic cirrhosis. We intend to compare the effects of increasing doses of clonidine (α2-agonist) vs. midodrine (α1-agonist) in advanced cirrhosis. METHODS: Renal function, mean arterial pressure (MAP), and hormonal status were measured in rats with ascitic cirrhosis due to 13-week CCl(4) administration (groups G1-G5), in control rats (Gc), and in rats with ascitic cirrhosis untreated (G6) or treated with daily diuretics (0.5 mg/kg furosemide plus 2 mg/kg K(+) -canrenoate during the 11(th) -13(th) weeks of CCl(4)) (G7). G1-G5 cirrhotic rats received daily, during the 11(th)-13(th) CCl(4) weeks: clonidine 0.3 µg only (G1), diuretics + clonidine 0.2 (G2), 0.5 (G3) or 1 µg (G4), and diuretics + midodrine 1 mg/kg b.w. (G5). RESULTS: Cirrhotic rats in G1 or G2 had higher glomerular filtration rate, renal plasma flow and natriuresis than cirrhotic rats treated with diuretics (G7) (all P < 0.05). The addition of clonidine 0.2 µg to diuretics (G2 vs. G7) reduced serum norepinephrine (169 ± 71 ng/L vs. 523 ± 88 ng/L) and plasma renin activity (12 ± 3 ng/ml/h vs. 25 ± 5 ng/ml/h) (all P < 0.05). Midodrine did not improve the renal performance in ascitic rats treated with diuretics. In comparison to absolute cirrhotic controls (G6), MAP was lower in G4 and higher in G5 (all P < 0.05). CONCLUSION: Low-dose α2-agonists improve natriuresis and reduce SNS function and hyper-aldosteronism without affecting arterial pressure in experimental ascitic cirrhosis treated with diuretics.


Asunto(s)
Ascitis , Clonidina , Cirrosis Hepática Experimental , Midodrina , Sistema Nervioso Simpático , Agonistas de Receptores Adrenérgicos alfa 1/administración & dosificación , Agonistas de Receptores Adrenérgicos alfa 1/efectos adversos , Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Agonistas de Receptores Adrenérgicos alfa 2/efectos adversos , Animales , Ascitis/etiología , Ascitis/fisiopatología , Presión Sanguínea/efectos de los fármacos , Clonidina/administración & dosificación , Clonidina/efectos adversos , Tasa de Filtración Glomerular/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Cirrosis Hepática Experimental/sangre , Cirrosis Hepática Experimental/complicaciones , Cirrosis Hepática Experimental/diagnóstico , Cirrosis Hepática Experimental/tratamiento farmacológico , Cirrosis Hepática Experimental/fisiopatología , Midodrina/administración & dosificación , Midodrina/efectos adversos , Norepinefrina/sangre , Ratas , Renina/sangre , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Resultado del Tratamiento
14.
J Adv Res ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365172

RESUMEN

INTRODUCTION: Obesity, one of the most frequent health problems in the adult population, is a condition characterized by excessive white adipose tissue accumulation and accompanied by the increased risk to develop other disorders such as type II diabetes, cardiovascular disorders, physical disability, frailty and sarcopenia. Total fat mass frequently increases during aging, often coexisting with sarcopenia, thus resulting in an emerging condition defined sarcopenic obesity (SO). Our previous data demonstrated the relevant role of the bromo and extra-terminal domain (BET) proteins inhibitor JQ1 in attenuating inflammation and fibrosis in sarcopenic mice. Moreover, we preliminarily observed that JQ1 administration markedly reduces white adipose tissue mass, suggesting a potential role of BET proteins on visceral fat deposition during aging. OBJECTIVES: Starting from those observations, the aim of this study was to investigate the ability of JQ1 to reduce adiposity in a chronic diet-induced obesity (DIO) mouse model mimicking the human metabolic syndrome. METHODS: Male C57BL/6J mice were divided in subgroups, either fed a standard diet or a high fat diet for 22 or 12 weeks, treated over the last 14 days with JQ1 or with vehicle. RESULTS: The results showed that JQ1 administration reduces fat mass, preserving skeletal muscle mass and function. A direct JQ1 lipolytic effect was demonstrated on mature adipocyte cultures. JQ1-mediated loss of adipose tissue mass was not associated with systemic inflammation or with lipid accumulation in muscle and liver. JQ1 administration did not impinge on skeletal muscle metabolism and oxidative capability, as shown by the lack of significant impact on mitochondrial mass and biogenesis. CONCLUSION: In conclusion, the current data highlight a potential benefit of JQ1 administration to counteract obesity, suggesting epigenetic modulation as a prospective target in the treatment of obesity and sarcopenic obesity, despite the underlying multiorgan molecular mechanism is still not completely elucidated.

15.
Mol Nutr Food Res ; 68(4): e2300476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158337

RESUMEN

SCOPE: Diets rich in fat and sugars evoke chronic low-grade inflammation, leading to metabolic derangements. This study investigates the impact of fructose and galactose, two commonly consumed simple sugars, on exacerbation of the harmful effects caused by high fat intake. Additionally, the potential efficacy of fructooligosaccharides (FOS), a fermentable dietary fiber, in counteracting these effects is examined. METHODS AND RESULTS: Male Sprague-Dawley rats (six/group) are fed 8 weeks as follows: control 5% fat diet (CNT), 20% fat diet (FAT), FAT+10% FOS diet (FAT+FOS), FAT+25% galactose diet (FAT+GAL), FAT+GAL+10% FOS diet (FAT+GAL+FOS), FAT+25% fructose diet (FAT+FRU), FAT+FRU+10% FOS diet (FAT+FRU+FOS). The dietary manipulations tested do not affect body weight gain, blood glucose, or markers of systemic inflammation whereas significant increases in plasma concentrations of triacylglycerols, cholesterol, aspartate aminotransferase, and alanine aminotrasferase are detected in both FAT+FRU and FAT+GAL compared to CNT. In the liver and skeletal muscle, both sugars induce significant accumulation of lipids and advanced glycation end-products (AGEs). FOS supplementation prevents these impairments. CONCLUSION: This study extends the understanding of the deleterious effects of a chronic intake of simple sugars and demonstrates the beneficial role of the prebiotic FOS in dampening the sugar-induced metabolic impairments by prevention of lipid and AGEs accumulation.


Asunto(s)
Fructosa , Enfermedades Metabólicas , Oligosacáridos , Ratas , Masculino , Animales , Fructosa/efectos adversos , Galactosa , Ratas Sprague-Dawley , Ingestión de Alimentos , Inflamación/prevención & control , Dieta Alta en Grasa/efectos adversos
16.
Nutrients ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398877

RESUMEN

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Asunto(s)
Spirulina , Masculino , Ratones , Animales , Spirulina/química , Ratones Obesos , Zinc , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad
17.
Am J Physiol Gastrointest Liver Physiol ; 305(6): G398-407, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23868406

RESUMEN

Clinical studies have linked the increased consumption of fructose to the development of obesity, dyslipidemia, and impaired glucose tolerance, and a role in hepatosteatosis development is presumed. Fructose can undergo a nonenzymatic reaction from which advanced glycation end products (AGEs) are derived, leading to the formation of dysfunctional, fructosylated proteins; however, the in vivo formation of AGEs from fructose is still less known than that from glucose. In the present study C57Bl/6J mice received 15% (wt/vol) fructose (FRT) or 15% (wt/vol) glucose (GLC) in water to drink for 30 wk, resembling human habit to consume sugary drinks. At the end of the protocol both FRT- and GLC-drinking mice had increased fasting glycemia, glucose intolerance, altered plasma lipid profile, and marked hepatosteatosis. FRT mice had higher hepatic triglycerides deposition than GLC, paralleled by a greater increased expression and activity of the sterol regulatory element-binding protein 1 (SREBP1), the transcription factor responsible for the de novo lipogenesis, and of its activating protein SCAP. LC-MS analysis showed a different pattern of AGE production in liver tissue between FRT and GLC mice, with larger amount of carboxymethyl lysine (CML) generated by fructose. Double immunofluorescence and coimmunoprecipitation analysis revealed an interaction between CML and SCAP that could lead to prolonged activation of SREBP1. Overall, the high levels of CML and activation of SCAP/SREBP pathway associated to high fructose exposure here reported may suggest a key role of this signaling pathway in mediating fructose-induced lipogenesis.


Asunto(s)
Hígado Graso/inducido químicamente , Fructosa/farmacología , Productos Finales de Glicación Avanzada/toxicidad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Ingestión de Líquidos , Hígado Graso/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Lípidos/sangre , Hígado/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Triglicéridos/metabolismo
18.
Clin Sci (Lond) ; 125(2): 67-75, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23384153

RESUMEN

In rats with experimental liver cirrhosis, the kidney contains reduced amounts of membrane-bound CaRs (calcium-sensing receptors), and the specific stimulation of CaRs causes the generation of PGE2 (prostaglandin E2), renal vasodilation and increased natriuresis. CaR content and function in the liver of cirrhotic rats are unknown. To assess the activity of this Ca2+-dependent vasomotor system, we evaluated the effects of intravenous administration of PolyAg (poly-L-arginine), a selective CaR agonist, on hormonal status, portal haemodynamics, MAP (mean arterial pressure) in rats with liver cirrhosis induced by chronic CCl4 (carbon tetrachloride) administration. Two groups of eight control rats received intravenously 1 ml of 5% (w/v) glucose solution alone or containing 0.5 mg of PolyAg; two groups of ten cirrhotic rats were administered vehicle or PolyAg. Compared with controls, at baseline cirrhotic rats showed higher portal pressure (P<0.01), lower estimated functional liver plasma flow, measured as CICG (Indocyanine Green clearance) (P<0.03) and reduced hepatic protein content of CaRs (P<0.03), which were located mainly in sub-endothelial layers of portal venules and in myofibroblasts of fibrotic septa (immunohistochemistry and indirect immunofluorescence staining of liver sections). In cirrhotic animals, 0.5 mg of PolyAg decreased portal pressure (P<0.01) and increased CICG (P<0.05), without effects on arterial pressure and hormonal status. In conclusion, the present study provides evidence that in experimental cirrhosis agonists of liver CaRs elicit beneficial portal hypotensive effects by reducing intrahepatic resistance to portal flow. Moreover, these drugs are devoid of effects on systemic haemodynamics.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/metabolismo , Circulación Hepática , Cirrosis Hepática Experimental/metabolismo , Presión Portal , Receptores Sensibles al Calcio/metabolismo , Aldosterona/sangre , Animales , Hemodinámica , Inmunohistoquímica , Verde de Indocianina , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/patología , Masculino , Óxidos de Nitrógeno/sangre , Norepinefrina/sangre , Péptidos , Ratas , Ratas Wistar , Receptores Sensibles al Calcio/agonistas , Renina/sangre
19.
Mediators Inflamm ; 2013: 509502, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861559

RESUMEN

Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.


Asunto(s)
Carbohidratos/administración & dosificación , Regulación de la Expresión Génica , Inflamación/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Inmunohistoquímica , Insulina/metabolismo , Interleucina-6/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Edulcorantes Nutritivos/administración & dosificación , PPAR delta/agonistas , Transducción de Señal , Tiazoles/farmacología
20.
Cardiovasc Diabetol ; 11: 129, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066908

RESUMEN

BACKGROUND: The aim of this study was to investigate whether obestatin (OB), a peptide mediator encoded by the ghrelin gene exerting a protective effect in ischemic reperfused heart, is able to reduce cardiac dysfunctions in adult diabetic rats. METHODS: Diabetes was induced by STZ injection (50 mg/kg) in Wistar rats (DM). OB was administered (25 µg/kg) twice a day for 6 weeks. Non-diabetic (ND) rats and DM rats were distributed into four groups: untreated ND, OB-treated ND, untreated DM, OB-treated DM. Cardiac contractility and ß-adrenergic response were studied on isolated papillary muscles. Phosphorylation of AMPK, Akt, ERK1/2 and GSK3ß as well ß-1 adrenoreceptors levels were detected by western blot, while α-MHC was measured by RT-PCR. RESULTS: OB preserved papillary muscle contractility (85 vs 27% of ND), ß-adrenergic response (103 vs 65% of ND), as well ß1-adrenoreceptors and α-MHC levels in diabetic myocardial tissue. Moreover, OB up-regulated the survival kinases Akt and ERK1/2, and enhanced AMPK and GSK3ß phosphorylation. OB corrected oxidative unbalance, reduced pro-inflammatory cytokine TNF-α plasma levels, NFkB translocation and pro-fibrogenic factors expression in diabetic myocardium. CONCLUSIONS: OB displays a significant beneficial effect against the alterations of contractility and ß-adrenergic response in the heart of STZ-treated diabetic rats, which was mainly associated with the ability of OB to up-regulate the transcription of ß1-adrenergic receptors and α-MHC; this protective effect was accompanied by the ability to restore oxidative balance and to promote phosphorylation/modulation of AMPK and pro-survival kinases such as Akt, ERK1/2 and GSK3ß.


Asunto(s)
Cardiotónicos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Contracción Miocárdica/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Hormonas Peptídicas/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Western Blotting , Línea Celular , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Hipoglucemiantes/farmacología , Mediadores de Inflamación/sangre , Masculino , Metformina/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatología , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 1/metabolismo , Recuperación de la Función , Factores de Tiempo , Factor de Necrosis Tumoral alfa/sangre , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA