Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(17): e202218555, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36828774

RESUMEN

After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.

2.
Angew Chem Int Ed Engl ; 57(17): 4697-4701, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29474002

RESUMEN

Studies were carried out on the hierarchical self-assembly versus pathway complexity of N-annulated perylenes 1-3, which differ only in the nature of the linking groups connecting the perylene core and the side alkoxy chains. Despite the structural similarity, compounds 1 and 2 exhibit noticeable differences in their self-assembly. Whereas 1 forms an off-pathway aggregate I that converts over time (or by addition of seeds) into the thermodynamic, on-pathway product, 2 undergoes a hierarchical process in which the kinetically trapped monomer species does not lead to a kinetically controlled supramolecular growth. Finally, compound 3, which lacks the amide groups, is unable to self-assemble under identical experimental conditions and highlights the key relevance of the amide groups and their position to govern the self-assembly pathways.

3.
Chem Commun (Camb) ; 57(40): 4890-4893, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33908487

RESUMEN

Oligophenyleneethynylenes (OPEs) are prominent building blocks with exciting optical and supramolecular properties. However, their generally small spectroscopic changes upon aggregation make the analysis of their self-assembly challenging, especially in the absence of additional hydrogen bonds. Herein, by investigating a series of OPEs of increasing size, we have unravelled the role of the conjugation length on the self-assembly properties of OPEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA