Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ArXiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38883236

RESUMEN

Background ­: Limited universally adopted data standards in veterinary science hinders data interoperability and therefore integration and comparison; this ultimately impedes application of existing information-based tools to support advancement in veterinary diagnostics, treatments, and precision medicine. Hypothesis/Objectives ­: Creation of a Vertebrate Breed Ontology (VBO) as a single, coherent logic-based standard for documenting breed names in animal health, production and research-related records will improve data use capabilities in veterinary and comparative medicine. Animals ­: No live animals were used in this study. Methods ­: A list of breed names and related information was compiled from relevant sources, organizations, communities, and experts using manual and computational approaches to create VBO. Each breed is represented by a VBO term that includes all provenance and the breed's related information as metadata. VBO terms are classified using description logic to allow computational applications and Artificial Intelligence-readiness. Results ­: VBO is an open, community-driven ontology representing over 19,000 livestock and companion animal breeds covering 41 species. Breeds are classified based on community and expert conventions (e.g., horse breed, cattle breed). This classification is supported by relations to the breeds' genus and species indicated by NCBI Taxonomy terms. Relationships between VBO terms, e.g. relating breeds to their foundation stock, provide additional context to support advanced data analytics. VBO term metadata includes common names and synonyms, breed identifiers/codes, and attributed cross-references to other databases. Conclusion and clinical importance ­: Veterinary data interoperability and computability can be enhanced by the adoption of VBO as a source of standard breed names in databases and veterinary electronic health records.

2.
Sci Data ; 11(1): 363, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605048

RESUMEN

Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Bases del Conocimiento , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA