RESUMEN
We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.
Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ribonucleasa P/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ribonucleasa P/metabolismo , Relación Estructura-ActividadRESUMEN
PI3Kα/mTOR ATP-competitive inhibitors are considered as one of the promising molecularly targeted cancer therapeutics. Based on lead compound A from the literature, two similar series of 2-substituted-4-morpholino-pyrido[3,2-d]pyrimidine and pyrido[2,3-d]pyrimidine analogs were designed and synthesized as PI3Kα/mTOR dual inhibitors. Interestingly, most of the series gave excellent inhibition for both enzymes with IC50 values ranging from single to double digit nM. Unlike many PI3Kα/mTOR dual inhibitors, our compounds displayed selectivity for PI3Kα. Based on its potent enzyme inhibitory activity, selectivity for PI3Kα and good therapeutic index in 2D cell culture viability assays, compound 4h was chosen to be evaluated in 3D culture for its IC50 against MCF7 breast cancer cells as well as for docking studies with both enzymes.
Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirimidinas/química , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Terciaria de Proteína , Pirimidinas/síntesis química , Pirimidinas/farmacología , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Nrf2 activators represent a good drug target for designing agents to treat diseases associated with oxidative stress. Building upon previous work, we designed and prepared a series of heterocyclic chalcone-based Nrf2 activators with reduced lipophilicity and, in some cases, greater in vitro potency compared to the respective carbocyclic scaffold. These changes resulted in enhanced oral bioavailability and a superior pharmacodynamic effect in vivo.
Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Chalcona/química , Chalcona/farmacología , Factor 2 Relacionado con NF-E2/agonistas , Administración Oral , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Células CACO-2 , Línea Celular , Chalcona/administración & dosificación , Chalcona/farmacocinética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , SolubilidadRESUMEN
The dual PI3Kα/ m TOR inhibitors represent a promising molecularly targeted therapy for cancer. Here, we documented the discovery of new 2,4-disubstituted quinazoline analogs as potent dual PI3Kα/sm TOR inhibitors. Our structure based chemistry endeavor yielded six excellent compounds 9e, 9f, 9g, 9k, 9m, and 9o with single/double digit nanomolar IC50 values against both enzymes and acceptable aqueous solubility and stability to oxidative metabolism. One of those analogs, 9m, possessed a sulfonamide substituent, which has not been described for this chemical scaffold before. The short direct synthetic routes, structure-activity relationship, in vitro 2D cell culture viability assays against normal fibroblasts and 3 breast cancer cell lines, and in vitro 3D culture viability assay against MCF7 cells for this series are described.
RESUMEN
The proline-rich designer antibacterial peptide dimer A3-APO is currently under preclinical development for the treatment of systemic infections caused by antibiotic-resistant Gram-negative bacteria. The peptide showed remarkable stability in 25% mouse serum in vitro, exhibiting a half-life of approximately 100 min as documented by reversed-phase chromatography. Indeed, after a 30-min incubation period in undiluted mouse serum ex vivo, mass spectrometry failed to identify any degradation product. The peptide was still a major peak in full blood ex vivo, however, with degradation products present corresponding to amino-terminal cleavage. When injected into mice intravenously, very little, if any unmodified peptide could be detected after 30 min. Nevertheless, the major early metabolite, a full single-chain fragment, was detectable until 90 min, and this fragment exhibited equal or slightly better activity in the broth microdilution antimicrobial assay against a panel of resistant Enterobactericeae strains. The Chex1-Arg20 metabolite, when administered three times at 20 mg/kg to mice infected with a sublethal dose (over LD(50)) of an extended spectrum beta-lactamase-producing Escherichia coli strain, completely sterilized the mouse blood, similar to imipenem added at a higher dose. The longer and presumably more immunogenic prodrug A3-APO, injected subcutaneously twice over a 3-wk period, did not induce any antibody production, indicating the suitability of this peptide or its active metabolite for clinical development.