Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D1405-D1416, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36624666

RESUMEN

The Illuminating the Druggable Genome (IDG) project aims to improve our understanding of understudied proteins and our ability to study them in the context of disease biology by perturbing them with small molecules, biologics, or other therapeutic modalities. Two main products from the IDG effort are the Target Central Resource Database (TCRD) (http://juniper.health.unm.edu/tcrd/), which curates and aggregates information, and Pharos (https://pharos.nih.gov/), a web interface for fusers to extract and visualize data from TCRD. Since the 2021 release, TCRD/Pharos has focused on developing visualization and analysis tools that help reveal higher-level patterns in the underlying data. The current iterations of TCRD and Pharos enable users to perform enrichment calculations based on subsets of targets, diseases, or ligands and to create interactive heat maps and UpSet charts of many types of annotations. Using several examples, we show how to address disease biology and drug discovery questions through enrichment calculations and UpSet charts.


Asunto(s)
Bases de Datos Factuales , Terapia Molecular Dirigida , Proteoma , Humanos , Productos Biológicos , Descubrimiento de Drogas , Internet , Proteoma/efectos de los fármacos
2.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373969

RESUMEN

MOTIVATION: Functional interpretation of high-throughput metabolomic and transcriptomic results is a crucial step in generating insight from experimental data. However, pathway and functional information for genes and metabolites are distributed among many siloed resources, limiting the scope of analyses that rely on a single knowledge source. RESULTS: RaMP-DB 2.0 is a web interface, relational database, API and R package designed for straightforward and comprehensive functional interpretation of metabolomic and multi-omic data. RaMP-DB 2.0 has been upgraded with an expanded breadth and depth of functional and chemical annotations (ClassyFire, LIPID MAPS, SMILES, InChIs, etc.), with new data types related to metabolites and lipids incorporated. To streamline entity resolution across multiple source databases, we have implemented a new semi-automated process, thereby lessening the burden of harmonization and supporting more frequent updates. The associated RaMP-DB 2.0 R package now supports queries on pathways, common reactions (e.g. metabolite-enzyme relationship), chemical functional ontologies, chemical classes and chemical structures, as well as enrichment analyses on pathways (multi-omic) and chemical classes. Lastly, the RaMP-DB web interface has been completely redesigned using the Angular framework. AVAILABILITY AND IMPLEMENTATION: The code used to build all components of RaMP-DB 2.0 are freely available on GitHub at https://github.com/ncats/ramp-db, https://github.com/ncats/RaMP-Client/ and https://github.com/ncats/RaMP-Backend. The RaMP-DB web application can be accessed at https://rampdb.nih.gov/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica , Programas Informáticos , Bases de Datos Factuales , Perfilación de la Expresión Génica , Bases del Conocimiento , Proteínas
3.
Nucleic Acids Res ; 50(D1): D1307-D1316, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34648031

RESUMEN

The United States has a complex regulatory scheme for marketing drugs. Understanding drug regulatory status is a daunting task that requires integrating data from many sources from the United States Food and Drug Administration (FDA), US government publications, and other processes related to drug development. At NCATS, we created Inxight Drugs (https://drugs.ncats.io), a web resource that attempts to address this challenge in a systematic manner. NCATS Inxight Drugs incorporates and unifies a wealth of data, including those supplied by the FDA and from independent public sources. The database offers a substantial amount of manually curated literature data unavailable from other sources. Currently, the database contains 125 036 product ingredients, including 2566 US approved drugs, 6242 marketed drugs, and 9684 investigational drugs. All substances are rigorously defined according to the ISO 11238 standard to comply with existing regulatory standards for unique drug substance identification. A special emphasis was placed on capturing manually curated and referenced data on treatment modalities and semantic relationships between substances. A supplementary resource 'Novel FDA Drug Approvals' features regulatory details of newly approved FDA drugs. The database is regularly updated using NCATS Stitcher data integration tool that automates data aggregation and supports full data access through a RESTful API.


Asunto(s)
Bases de Datos Factuales , Bases de Datos Farmacéuticas , Preparaciones Farmacéuticas/clasificación , United States Food and Drug Administration , Humanos , National Center for Advancing Translational Sciences (U.S.) , Investigación Biomédica Traslacional/clasificación , Estados Unidos
4.
Clin Infect Dis ; 77(6): 816-826, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207367

RESUMEN

BACKGROUND: Identifying individuals with a higher risk of developing severe coronavirus disease 2019 (COVID-19) outcomes will inform targeted and more intensive clinical monitoring and management. To date, there is mixed evidence regarding the impact of preexisting autoimmune disease (AID) diagnosis and/or immunosuppressant (IS) exposure on developing severe COVID-19 outcomes. METHODS: A retrospective cohort of adults diagnosed with COVID-19 was created in the National COVID Cohort Collaborative enclave. Two outcomes, life-threatening disease and hospitalization, were evaluated by using logistic regression models with and without adjustment for demographics and comorbidities. RESULTS: Of the 2 453 799 adults diagnosed with COVID-19, 191 520 (7.81%) had a preexisting AID diagnosis and 278 095 (11.33%) had a preexisting IS exposure. Logistic regression models adjusted for demographics and comorbidities demonstrated that individuals with a preexisting AID (odds ratio [OR], 1.13; 95% confidence interval [CI]: 1.09-1.17; P < .001), IS exposure (OR, 1.27; 95% CI: 1.24-1.30; P < .001), or both (OR, 1.35; 95% CI: 1.29-1.40; P < .001) were more likely to have a life-threatening disease. These results were consistent when hospitalization was evaluated. A sensitivity analysis evaluating specific IS revealed that tumor necrosis factor inhibitors were protective against life-threatening disease (OR, 0.80; 95% CI: .66-.96; P = .017) and hospitalization (OR, 0.80; 95% CI: .73-.89; P < .001). CONCLUSIONS: Patients with preexisting AID, IS exposure, or both are more likely to have a life-threatening disease or hospitalization. These patients may thus require tailored monitoring and preventative measures to minimize negative consequences of COVID-19.


Asunto(s)
Autoinmunidad , COVID-19 , Adulto , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , Hospitalización , Inmunosupresores/uso terapéutico
5.
Trends Genet ; 36(12): 951-966, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32868128

RESUMEN

Single-cell multimodal omics (scMulti-omics) technologies have made it possible to trace cellular lineages during differentiation and to identify new cell types in heterogeneous cell populations. The derived information is especially promising for computing cell-type-specific biological networks encoded in complex diseases and improving our understanding of the underlying gene regulatory mechanisms. The integration of these networks could, therefore, give rise to a heterogeneous regulatory landscape (HRL) in support of disease diagnosis and drug therapeutics. In this review, we provide an overview of this field and pay particular attention to how diverse biological networks can be inferred in a specific cell type based on integrative methods. Then, we discuss how HRL can advance our understanding of regulatory mechanisms underlying complex diseases and aid in the prediction of prognosis and therapeutic responses. Finally, we outline challenges and future trends that will be central to bringing the field of HRL in complex diseases forward.


Asunto(s)
Biología Computacional/métodos , Enfermedad/genética , Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos , Animales , Humanos
6.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203516

RESUMEN

Understanding the molecular underpinnings of disease severity and progression in human studies is necessary to develop metabolism-related preventative strategies for severe COVID-19. Metabolites and metabolic pathways that predispose individuals to severe disease are not well understood. In this study, we generated comprehensive plasma metabolomic profiles in >550 patients from the Longitudinal EMR and Omics COVID-19 Cohort. Samples were collected before (n = 441), during (n = 86), and after (n = 82) COVID-19 diagnosis, representing 555 distinct patients, most of which had single timepoints. Regression models adjusted for demographics, risk factors, and comorbidities, were used to determine metabolites associated with predisposition to and/or persistent effects of COVID-19 severity, and metabolite changes that were transient/lingering over the disease course. Sphingolipids/phospholipids were negatively associated with severity and exhibited lingering elevations after disease, while modified nucleotides were positively associated with severity and had lingering decreases after disease. Cytidine and uridine metabolites, which were positively and negatively associated with COVID-19 severity, respectively, were acutely elevated, reflecting the particular importance of pyrimidine metabolism in active COVID-19. This is the first large metabolomics study using COVID-19 plasma samples before, during, and/or after disease. Our results lay the groundwork for identifying putative biomarkers and preventive strategies for severe COVID-19.


Asunto(s)
COVID-19 , Nucleótidos , Humanos , Quinurenina , Prueba de COVID-19 , Estudios Prospectivos , Fosfolípidos
7.
Am J Epidemiol ; 191(1): 147-158, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33889934

RESUMEN

Consortium-based research is crucial for producing reliable, high-quality findings, but existing tools for consortium studies have important drawbacks with respect to data protection, ease of deployment, and analytical rigor. To address these concerns, we developed COnsortium of METabolomics Studies (COMETS) Analytics to support and streamline consortium-based analyses of metabolomics and other -omics data. The application requires no specialized expertise and can be run locally to guarantee data protection or through a Web-based server for convenience and speed. Unlike other Web-based tools, COMETS Analytics enables standardized analyses to be run across all cohorts, using an algorithmic, reproducible approach to diagnose, document, and fix model issues. This eliminates the time-consuming and potentially error-prone step of manually customizing models by cohort, helping to accelerate consortium-based projects and enhancing analytical reproducibility. We demonstrated that the application scales well by performing 2 data analyses in 45 cohort studies that together comprised measurements of 4,647 metabolites in up to 134,742 participants. COMETS Analytics performed well in this test, as judged by the minimal errors that analysts had in preparing data inputs and the successful execution of all models attempted. As metabolomics gathers momentum among biomedical and epidemiologic researchers, COMETS Analytics may be a useful tool for facilitating large-scale consortium-based research.


Asunto(s)
Academias e Institutos/organización & administración , Análisis de Datos , Estudios Epidemiológicos , Metabolómica/métodos , Algoritmos , Humanos , Internet , Diseño de Software
8.
J Chem Inf Model ; 62(3): 718-729, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35057621

RESUMEN

In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63 278 host-host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.


Asunto(s)
COVID-19 , Reposicionamiento de Medicamentos , Humanos , Farmacología en Red , Pandemias , SARS-CoV-2 , Flujo de Trabajo
9.
Bioorg Med Chem ; 56: 116588, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030421

RESUMEN

Membrane permeability plays an important role in oral drug absorption. Caco-2 and Madin-Darby Canine Kidney (MDCK) cell culture systems have been widely used for assessing intestinal permeability. Since most drugs are absorbed passively, Parallel Artificial Membrane Permeability Assay (PAMPA) has gained popularity as a low-cost and high-throughput method in early drug discovery when compared to high-cost, labor intensive cell-based assays. At the National Center for Advancing Translational Sciences (NCATS), PAMPA pH 5 is employed as one of the Tier I absorption, distribution, metabolism, and elimination (ADME) assays. In this study, we have developed a quantitative structure activity relationship (QSAR) model using our ∼6500 compound PAMPA pH 5 permeability dataset. Along with ensemble decision tree-based methods such as Random Forest and eXtreme Gradient Boosting, we employed deep neural network and a graph convolutional neural network to model PAMPA pH 5 permeability. The classification models trained on a balanced training set provided accuracies ranging from 71% to 78% on the external set. Of the four classifiers, the graph convolutional neural network that directly operates on molecular graphs offered the best classification performance. Additionally, an ∼85% correlation was obtained between PAMPA pH 5 permeability and in vivo oral bioavailability in mice and rats. These results suggest that data from this assay (experimental or predicted) can be used to rank-order compounds for preclinical in vivo testing with a high degree of confidence, reducing cost and attrition as well as accelerating the drug discovery process. Additionally, experimental data for 486 compounds (PubChem AID: 1645871) and the best models have been made publicly available (https://opendata.ncats.nih.gov/adme/).


Asunto(s)
Betametasona/farmacocinética , Dexametasona/farmacocinética , Ranitidina/farmacocinética , Verapamilo/farmacocinética , Administración Oral , Animales , Betametasona/administración & dosificación , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Dexametasona/administración & dosificación , Perros , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Células de Riñón Canino Madin Darby , Ratones , Estructura Molecular , Redes Neurales de la Computación , Ranitidina/administración & dosificación , Ratas , Relación Estructura-Actividad , Verapamilo/administración & dosificación
10.
BMC Bioinformatics ; 22(1): 35, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516170

RESUMEN

BACKGROUND: Assigning chromatin states genome-wide (e.g. promoters, enhancers, etc.) is commonly performed to improve functional interpretation of these states. However, computational methods to assign chromatin state suffer from the following drawbacks: they typically require data from multiple assays, which may not be practically feasible to obtain, and they depend on peak calling algorithms, which require careful parameterization and often exclude the majority of the genome. To address these drawbacks, we propose a novel learning technique built upon the Self-Organizing Map (SOM), Self-Organizing Map with Variable Neighborhoods (SOM-VN), to learn a set of representative shapes from a single, genome-wide, chromatin accessibility dataset to associate with a chromatin state assignment in which a particular RE is prevalent. These shapes can then be used to assign chromatin state using our workflow. RESULTS: We validate the performance of the SOM-VN workflow on 14 different samples of varying quality, namely one assay each of A549 and GM12878 cell lines and two each of H1 and HeLa cell lines, primary B-cells, and brain, heart, and stomach tissue. We show that SOM-VN learns shapes that are (1) non-random, (2) associated with known chromatin states, (3) generalizable across sets of chromosomes, and (4) associated with magnitude and multimodality. We compare the accuracy of SOM-VN chromatin states against the Clustering Aggregation Tool (CAGT), an unsupervised method that learns chromatin accessibility signal shapes but does not associate these shapes with REs, and we show that overall precision and recall is increased when learning shapes using SOM-VN as compared to CAGT. We further compare enhancer state assignments from SOM-VN in signals above a set threshold to enhancer state assignments from Predicting Enhancers from ATAC-seq Data (PEAS), a deep learning method that assigns enhancer chromatin states to peaks. We show that the precision-recall area under the curve for the assignment of enhancer states is comparable to PEAS. CONCLUSIONS: Our work shows that the SOM-VN workflow can learn relationships between REs and chromatin accessibility signal shape, which is an important step toward the goal of assigning and comparing enhancer state across multiple experiments and phenotypic states.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Adulto , Algoritmos , Preescolar , Cromatina/genética , Células HeLa , Humanos , Adulto Joven
11.
BMC Bioinformatics ; 19(1): 81, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506475

RESUMEN

BACKGROUND: Integration of transcriptomic and metabolomic data improves functional interpretation of disease-related metabolomic phenotypes, and facilitates discovery of putative metabolite biomarkers and gene targets. For this reason, these data are increasingly collected in large (> 100 participants) cohorts, thereby driving a need for the development of user-friendly and open-source methods/tools for their integration. Of note, clinical/translational studies typically provide snapshot (e.g. one time point) gene and metabolite profiles and, oftentimes, most metabolites measured are not identified. Thus, in these types of studies, pathway/network approaches that take into account the complexity of transcript-metabolite relationships may neither be applicable nor readily uncover novel relationships. With this in mind, we propose a simple linear modeling approach to capture disease-(or other phenotype) specific gene-metabolite associations, with the assumption that co-regulation patterns reflect functionally related genes and metabolites. RESULTS: The proposed linear model, metabolite ~ gene + phenotype + gene:phenotype, specifically evaluates whether gene-metabolite relationships differ by phenotype, by testing whether the relationship in one phenotype is significantly different from the relationship in another phenotype (via a statistical interaction gene:phenotype p-value). Statistical interaction p-values for all possible gene-metabolite pairs are computed and significant pairs are then clustered by the directionality of associations (e.g. strong positive association in one phenotype, strong negative association in another phenotype). We implemented our approach as an R package, IntLIM, which includes a user-friendly R Shiny web interface, thereby making the integrative analyses accessible to non-computational experts. We applied IntLIM to two previously published datasets, collected in the NCI-60 cancer cell lines and in human breast tumor and non-tumor tissue, for which transcriptomic and metabolomic data are available. We demonstrate that IntLIM captures relevant tumor-specific gene-metabolite associations involved in known cancer-related pathways, including glutamine metabolism. Using IntLIM, we also uncover biologically relevant novel relationships that could be further tested experimentally. CONCLUSIONS: IntLIM provides a user-friendly, reproducible framework to integrate transcriptomic and metabolomic data and help interpret metabolomic data and uncover novel gene-metabolite relationships. The IntLIM R package is publicly available in GitHub ( https://github.com/mathelab/IntLIM ) and includes a user-friendly web application, vignettes, sample data and data/code to reproduce results.


Asunto(s)
Regulación de la Expresión Génica , Metabolómica , Programas Informáticos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Humanos , Modelos Lineales , Metaboloma/genética , Fenotipo , Transcriptoma/genética
12.
Bioinformatics ; 33(5): 740-742, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011773

RESUMEN

Summary: Regulatory elements regulate gene transcription, and their location and accessibility is cell-type specific, particularly for enhancers. Mapping and comparing chromatin accessibility between different cell types may identify mechanisms involved in cellular development and disease progression. To streamline and simplify differential analysis of regulatory elements genome-wide using chromatin accessibility data, such as DNase-seq, ATAC-seq, we developed ALTRE ( ALT ered R egulatory E lements), an R package and associated R Shiny web app. ALTRE makes such analysis accessible to a wide range of users-from novice to practiced computational biologists. Availability and Implementation: https://github.com/Mathelab/ALTRE. Contact: ewy.mathe@osumc.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Cromatina , Biología Computacional/métodos , Secuencias Reguladoras de Ácidos Nucleicos , Programas Informáticos , Flujo de Trabajo , Inmunoprecipitación de Cromatina , Humanos
13.
PLoS One ; 19(1): e0289518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271343

RESUMEN

Drug repurposing is a strategy for identifying new uses of approved or investigational drugs that are outside the scope of the original medical indication. Even though many repurposed drugs have been found serendipitously in the past, the increasing availability of large volumes of biomedical data has enabled more systemic, data-driven approaches for drug candidate identification. At National Center of Advancing Translational Sciences (NCATS), we invent new methods to generate new data and information publicly available to spur innovation and scientific discovery. In this study, we aimed to explore and demonstrate biomedical data generated and collected via two NCATS research programs, the Toxicology in the 21st Century program (Tox21) and the Biomedical Data Translator (Translator) for the application of drug repurposing. These two programs provide complementary types of biomedical data from uncovering underlying biological mechanisms with bioassay screening data from Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined from the Translator towards drug repurposing. 129 chemical clusters have been generated and three of them have been further investigated for drug repurposing candidate identification, which is detailed as case studies.


Asunto(s)
Reposicionamiento de Medicamentos , National Center for Advancing Translational Sciences (U.S.) , Estados Unidos , Ciencia Traslacional Biomédica
14.
Stud Health Technol Inform ; 310: 94-98, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38269772

RESUMEN

Drug development in rare diseases is challenging due to the limited availability of subjects with the diseases and recruiting from a small patient population. The high cost and low success rate of clinical trials motivate deliberate analysis of existing clinical trials to understand status of clinical development of orphan drugs and discover new insight for new trial. In this project, we aim to develop a user centered Rare disease based Clinical Trial Knowledge Graph (RCTKG) to integrate publicly available clinical trial data with rare diseases from the Genetic and Rare Disease (GARD) program in a semantic and standardized form for public use. To better serve and represent the interests of rare disease users, user stories were defined for three types of users, patients, healthcare providers and informaticians, to guide the RCTKG design in supporting the GARD program at NCATS/NIH and the broad clinical/research community in rare diseases.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Enfermedades Raras , Humanos , Enfermedades Raras/tratamiento farmacológico , Enfermedades Raras/genética , Personal de Salud , Conocimiento
15.
medRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38410429

RESUMEN

Epidemiology studies evaluate associations between the metabolome and disease risk. Urine is a common biospecimen used for such studies due to its wide availability and non-invasive collection. Evaluating the robustness of urinary metabolomic profiles under varying preanalytical conditions is thus of interest. Here we evaluate the impact of sample handling conditions on urine metabolome profiles relative to the gold standard condition (no preservative, no refrigeration storage, single freeze thaw). Conditions tested included the use of borate or chlorhexidine preservatives, various storage and freeze/thaw cycles. We demonstrate that sample handling conditions impact metabolite levels, with borate showing the largest impact with 125 of 1,048 altered metabolites (adjusted P < 0.05). When simulating a case-control study with expected inconsistencies in sample handling, we predicted the occurrence of false positive altered metabolites to be low (< 11). Predicted false positives increased substantially (³63) when cases were simulated to undergo alternate handling. Finally, we demonstrate that sample handling impacts on the urinary metabolome were markedly smaller than those in serum. While changes in urine metabolites incurred by sample handling are generally small, we recommend implementing consistent handling conditions and evaluating robustness of metabolite measurements for those showing significant associations with disease outcomes.

16.
medRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38883716

RESUMEN

Serum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation to allergic sensitization. High levels are associated with airway obstruction and poor clinical outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates discovery of molecular mechanisms underlying serum IgE level differences in children with asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were measured among children with asthma in the Childhood Asthma Management Program (CAMP, N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each cohort using multivariate linear models and were interpreted in a biochemical context using network topology, pathway and chemical enrichment, and representation within reactions. A total of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with the most genes in both cohorts, and the associations represented reactions central to glycine, serine, and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment analysis further highlighted additional related pathways of interest. The results of this study suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma exacerbation. Other potentially new targetable pathways are also uncovered.

17.
Int J Cancer ; 132(12): 2901-9, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23175214

RESUMEN

MicroRNAs (miRNAs) and inflammatory genes have a role in the initiation and development of esophageal squamous cell carcinoma (ESCC). In our study, we examined the potential of using miRNA and inflammatory gene expression patterns as prognostic classifiers for ESCC. Five miRNAs and 25 inflammatory-related genes were measured by quantitative reverse transcriptase PCR in tumor tissues and adjacent noncancerous tissues from 178 Chinese patients with ESCC. The expression levels of miR-21 (p = 0.027), miR-181b (p = 0.002) and miR-146b (p = 0.021) in tumor tissue and miR-21 (p = 0.003) in noncancerous tissue were associated with overall survival of patients. These data were combined to generate a miRNA risk score that was significantly associated with worse prognosis (p = 0.0001), suggesting that these miRNAs may be useful prognostic classifiers for ESCC. To construct an inflammatory gene prognostic classifier, we divided the population into training (n = 124) and test cohorts (n = 54). The expression levels of CRY61, CTGF and IL-18 in tumor tissue and VEGF in adjacent noncancerous tissue were modestly associated with prognosis in the training cohort |Z-score| > 1.5 and were subsequently used to construct a Cox regression-based inflammatory risk score (IRS). IRS was significantly associated with survival in both the training cohort (p = 0.002) and the test cohort (p = 0.005). Furthermore, Cox regression models combining both miRNA risk score and IRS performed significantly better than models with either alone (p < 0.001 likelihood ratio test). Therefore, miRNA and inflammatory gene expression patterns, alone or in combination, have potential as prognostic classifiers for ESCC and may help to guide therapeutic decisions.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Regulación Neoplásica de la Expresión Génica , Inflamación/genética , MicroARNs/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico
19.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824742

RESUMEN

Objective: Identifying sets of rare diseases with shared aspects of etiology and pathophysiology may enable drug repurposing and/or platform based therapeutic development. Toward that aim, we utilized an integrative knowledge graph-based approach to constructing clusters of rare diseases. Materials and Methods: Data on 3,242 rare diseases were extracted from the National Center for Advancing Translational Science (NCATS) Genetic and Rare Diseases Information center (GARD) internal data resources. The rare disease data was enriched with additional biomedical data, including gene and phenotype ontologies, biological pathway data and small molecule-target activity data, to create a knowledge graph (KG). Node embeddings were used to convert nodes into vectors upon which k-means clustering was applied. We validated the disease clusters through semantic similarity and feature enrichment analysis. Results: A node embedding model was trained on the ontology enriched rare disease KG and k-means clustering was applied to the embedding vectors resulting in 37 disease clusters with a mean size of 87 diseases. We validate the disease clusters quantitatively by looking at semantic similarity of clustered diseases, using the Orphanet Rare Disease Ontology. In addition, the clusters were analyzed for enrichment of associated genes, revealing that the enriched genes within clusters were shown to be highly related. Discussion: We demonstrate that node embeddings are an effective method for clustering diseases within a heterogenous KG. Semantically similar diseases and relevant enriched genes have been uncovered within the clusters. Connections between disease clusters and approved or investigational drugs are enumerated for follow-up efforts. Conclusion: Our study lays out a method for clustering rare diseases using the graph node embeddings. We develop an easy to maintain pipeline that can be updated when new data on rare diseases emerges. The embeddings themselves can be paired with other representation learning methods for other data types, such as drugs, to address other predictive modeling problems. Detailed subnetwork analysis and in-depth review of individual clusters may lead to translatable findings. Future work will focus on incorporation of additional data sources, with a particular focus on common disease data.

20.
Orphanet J Rare Dis ; 18(1): 301, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749605

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most aggressive and common malignant primary brain tumor; however, treatment remains a significant challenge. This study aims to identify drug repurposing or repositioning candidates for GBM by developing an integrative rare disease profile network containing heterogeneous types of biomedical data. METHODS: We developed a Glioblastoma-based Biomedical Profile Network (GBPN) by extracting and integrating biomedical information pertinent to GBM-related diseases from the NCATS GARD Knowledge Graph (NGKG). We further clustered the GBPN based on modularity classes which resulted in multiple focused subgraphs, named mc_GBPN. We then identified high-influence nodes by performing network analysis over the mc_GBPN and validated those nodes that could be potential drug repurposing or repositioning candidates for GBM. RESULTS: We developed the GBPN with 1,466 nodes and 107,423 edges and consequently the mc_GBPN with forty-one modularity classes. A list of the ten most influential nodes were identified from the mc_GBPN. These notably include Riluzole, stem cell therapy, cannabidiol, and VK-0214, with proven evidence for treating GBM. CONCLUSION: Our GBM-targeted network analysis allowed us to effectively identify potential candidates for drug repurposing or repositioning. Further validation will be conducted by using other different types of biomedical and clinical data and biological experiments. The findings could lead to less invasive treatments for glioblastoma while significantly reducing research costs by shortening the drug development timeline. Furthermore, this workflow can be extended to other disease areas.


Asunto(s)
Cannabidiol , Glioblastoma , Humanos , Reposicionamiento de Medicamentos , Glioblastoma/tratamiento farmacológico , Enfermedades Raras , Desarrollo de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA