Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(6): 958-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417694

RESUMEN

Genetic polymorphisms that impair very low-density lipoprotein (VLDL) secretion are linked to hepatic steatosis, fibrosis, and hepatocellular cancer. Liver-specific deletion of microsomal triglyceride transfer protein (Mttp-LKO) impairs VLDL assembly, promoting hepatic steatosis and fibrosis, which are attenuated in Mttp-LKO X Fabp1-null [Fabp1/Mttp double knockout (DKO)] mice. The current study examined the impact of impaired VLDL secretion in Mttp-LKO mice on hepatocellular cancer incidence and progression in comparison to Fabp1/Mttp DKO mice. Diethylnitrosamine-treated Mttp-LKO mice exhibited steatosis with increased tumor burden compared with flox controls, whereas diethylnitrosamine-treated Fabp1/Mttp DKO mice exhibited a paradoxical increase in tumor burden and >50% mortality by 50 weeks. Serum high-density lipoprotein cholesterol was elevated in both Mttp-LKO and Fabp1/Mttp DKO mice, with increased intratumoral expression of apolipoprotein A1 and apolipoprotein E. Lipidomic surveys revealed progressive enrichment in distinct triglyceride species in livers from Mttp-LKO mice with further enrichment in Fabp1/Mttp DKO mice. RNA sequencing revealed mRNA changes suggesting altered monocarboxylic acid use and increased aerobic glycolysis, whereas hepatocytes from Fabp1/Mttp DKO mice exhibited increased capacity to use glucose and glutamine. These metabolic shifts were accompanied by reduced expression of HNF1 homeobox A (HNF1a), which correlated with tumor burden. Taken together, these findings demonstrate that hepatic tumorigenesis is increased in mice with impaired VLDL secretion and further accelerated via pathways including altered fatty acid compartmentalization and shifts in hepatic energy use.


Asunto(s)
Carcinogénesis , Proteínas de Unión a Ácidos Grasos , Lipoproteínas VLDL , Neoplasias Hepáticas , Ratones Noqueados , Animales , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lipoproteínas VLDL/metabolismo , Ratones , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Hígado/metabolismo , Hígado/patología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Eliminación de Gen , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
2.
Hepatology ; 79(1): 135-148, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505221

RESUMEN

BACKGROUND: Early identification of those with NAFLD activity score ≥ 4 and significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated steatohepatitis (MASH) is a priority as these patients are at increased risk for disease progression and may benefit from therapies. We developed and validated a highly specific metabolomics-driven score to identify at-risk MASH. METHODS: We included derivation (n = 790) and validation (n = 565) cohorts from international tertiary centers. Patients underwent laboratory assessment and liver biopsy for metabolic dysfunction-associated steatotic liver disease. Based on 12 lipids, body mass index, aspartate aminotransferase, and alanine aminotransferase, the MASEF score was developed to identify at-risk MASH and compared to the FibroScan-AST (FAST) score. We further compared the performance of a FIB-4 + MASEF algorithm to that of FIB-4 + liver stiffness measurements (LSM) by vibration-controlled transient elastography (VCTE). RESULTS: The diagnostic performance of the MASEF score showed an area under the receiver-operating characteristic curve, sensitivity, specificity, and positive and negative predictive values of 0.76 (95% CI 0.72-0.79), 0.69, 0.74, 0.53, and 0.85 in the derivation cohort, and 0.79 (95% CI 0.75-0.83), 0.78, 0.65, 0.48, and 0.88 in the validation cohort, while FibroScan-AST performance in the validation cohort was 0.74 (95% CI 0.68-0.79; p = 0.064), 0.58, 0.79, 0.67, and 0.73, respectively. FIB-4+MASEF showed similar overall performance compared with FIB-4 + LSM by VCTE ( p = 0.69) to identify at-risk MASH. CONCLUSION: MASEF is a promising diagnostic tool for the assessment of at-risk MASH. It could be used alternatively to LSM by VCTE in the algorithm that is currently recommended by several guidance publications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Fibrosis , Valor Predictivo de las Pruebas , Biopsia/efectos adversos
3.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086446

RESUMEN

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/patología , Metaloproteinasa 7 de la Matriz/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Prohibitinas , Microambiente Tumoral
4.
Hepatology ; 75(2): 280-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34449924

RESUMEN

BACKGROUND AND AIMS: Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. APPROACH AND RESULTS: We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5'-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression-mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. CONCLUSIONS: Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.


Asunto(s)
Autoantígenos/metabolismo , Oligonucleótidos/genética , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/antagonistas & inhibidores , Ribonucleoproteínas/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/inmunología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Metionina Adenosiltransferasa/genética , Ratones , Ratones Noqueados , Mutación , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteómica , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , S-Adenosilmetionina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Antígeno SS-B
5.
Hepatology ; 76(4): 1121-1134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35220605

RESUMEN

BACKGROUND AND AIMS: We previously identified subsets of patients with NAFLD with different metabolic phenotypes. Here we align metabolomic signatures with cardiovascular disease (CVD) and genetic risk factors. APPROACH AND RESULTS: We analyzed serum metabolome from 1154 individuals with biopsy-proven NAFLD, and from four mouse models of NAFLD with impaired VLDL-triglyceride (TG) secretion, and one with normal VLDL-TG secretion. We identified three metabolic subtypes: A (47%), B (27%), and C (26%). Subtype A phenocopied the metabolome of mice with impaired VLDL-TG secretion; subtype C phenocopied the metabolome of mice with normal VLDL-TG; and subtype B showed an intermediate signature. The percent of patients with NASH and fibrosis was comparable among subtypes, although subtypes B and C exhibited higher liver enzymes. Serum VLDL-TG levels and secretion rate were lower among subtype A compared with subtypes B and C. Subtype A VLDL-TG and VLDL-apolipoprotein B concentrations were independent of steatosis, whereas subtypes B and C showed an association with these parameters. Serum TG, cholesterol, VLDL, small dense LDL5,6 , and remnant lipoprotein cholesterol were lower among subtype A compared with subtypes B and C. The 10-year high risk of CVD, measured with the Framingham risk score, and the frequency of patatin-like phospholipase domain-containing protein 3 NAFLD risk allele were lower in subtype A. CONCLUSIONS: Metabolomic signatures identify three NAFLD subgroups, independent of histological disease severity. These signatures align with known CVD and genetic risk factors, with subtype A exhibiting a lower CVD risk profile. This may account for the variation in hepatic versus cardiovascular outcomes, offering clinically relevant risk stratification.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Animales , Apolipoproteínas B , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , VLDL-Colesterol/metabolismo , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteínas VLDL , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfolipasas/metabolismo , Factores de Riesgo , Triglicéridos/metabolismo
6.
Handb Exp Pharmacol ; 277: 275-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36253553

RESUMEN

For a long time, conventional medicine has analysed biomolecules to diagnose diseases. Yet, this approach has proven valid only for a limited number of metabolites and often through a bijective relationship with the disease (i.e. glucose relationship with diabetes), ultimately offering incomplete diagnostic value. Nowadays, precision medicine emerges as an option to improve the prevention and/or treatment of numerous pathologies, focusing on the molecular mechanisms, acting in a patient-specific dimension, and leveraging multiple contributing factors such as genetic, environmental, or lifestyle. Metabolomics grasps the required subcellular complexity while being sensitive to all these factors, which results in a most suitable technique for precision medicine. The aim of this chapter is to describe how NMR-based metabolomics can be integrated in the design of a precision medicine strategy, using the Precision Medicine Initiative of the Basque Country (the AKRIBEA project) as a case study. To that end, we will illustrate the procedures to be followed when conducting an NMR-based metabolomics study with a large cohort of individuals, emphasizing the critical points. The chapter will conclude with the discussion of some relevant biomedical applications.


Asunto(s)
Diabetes Mellitus , Medicina de Precisión , Humanos , Estudios Prospectivos , Metabolómica/métodos , Diabetes Mellitus/metabolismo , Biomarcadores
7.
Proteomics ; 22(23-24): e2200222, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205620

RESUMEN

Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.


Asunto(s)
Chaperonas Moleculares , Pliegue de Proteína , Humanos , Enfermedades Raras/tratamiento farmacológico , Estabilidad Proteica , Agregado de Proteínas
8.
Biochemistry ; 61(21): 2409-2416, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36241173

RESUMEN

Patients with major forms of acute hepatic porphyria present acute neurological attacks with overproduction of porphobilinogen (PBG) and δ-aminolevulinic acid (ALA). Even if ALA is considered the most likely agent inducing the acute symptoms, the mechanism of its accumulation has not been experimentally demonstrated. In the most frequent form, acute intermittent porphyria (AIP), inherited gene mutations induce a deficiency in PBG deaminase; thus, accumulation of the substrate PBG is biochemically obligated but not that of ALA. A similar scenario is observed in other forms of acute hepatic porphyria (i.e., porphyria variegate, VP) in which PBG deaminase is inhibited by metabolic intermediates. Here, we have investigated the molecular basis of δ-aminolevulinate accumulation using in vitro fluxomics monitored by NMR spectroscopy and other biophysical techniques. Our results show that porphobilinogen, the natural product of δ-aminolevulinate deaminase, effectively inhibits its anabolic enzyme at abnormally low concentrations. Structurally, this high affinity can be explained by the interactions that porphobilinogen generates with the active site, most of them shared with the substrate. Enzymatically, our flux analysis of an altered heme pathway demonstrates that a minimum accumulation of porphobilinogen will immediately trigger the accumulation of δ-aminolevulinate, a long-lasting observation in patients suffering from acute porphyrias.


Asunto(s)
Porfiria Intermitente Aguda , Porfirias Hepáticas , Humanos , Porfiria Intermitente Aguda/genética , Porfiria Intermitente Aguda/metabolismo , Porfobilinógeno , Hidroximetilbilano Sintasa/genética , Hidroximetilbilano Sintasa/metabolismo , Porfirias Hepáticas/genética
9.
J Hepatol ; 77(1): 15-28, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167910

RESUMEN

BACKGROUND & AIMS: The pathogenesis of liver fibrosis requires activation of hepatic stellate cells (HSCs); once activated, HSCs lose intracellular fatty acids but the role of fatty acid oxidation and carnitine palmitoyltransferase 1A (CPT1A) in this process remains largely unexplored. METHODS: CPT1A was found in HSCs of patients with fibrosis. Pharmacological and genetic manipulation of CPT1A were performed in human HSC cell lines and primary HCSs. Finally, we induced fibrosis in mice lacking CPT1A specifically in HSCs. RESULTS: Herein, we show that CPT1A expression is elevated in HSCs of patients with non-alcoholic steatohepatitis, showing a positive correlation with the fibrosis score. This was corroborated in rodents with fibrosis, as well as in primary human HSCs and LX-2 cells activated by transforming growth factor ß1 (TGFß1) and fetal bovine serum (FBS). Furthermore, both pharmacological and genetic silencing of CPT1A prevent TGFß1- and FBS-induced HSC activation by reducing mitochondrial activity. The overexpression of CPT1A, induced by saturated fatty acids and reactive oxygen species, triggers mitochondrial activity and the expression of fibrogenic markers. Finally, mice lacking CPT1A specifically in HSCs are protected against fibrosis induced by a choline-deficient high-fat diet, a methionine- and choline-deficient diet, or treatment with carbon tetrachloride. CONCLUSIONS: These results indicate that CPT1A plays a critical role in the activation of HSCs and is implicated in the development of liver fibrosis, making it a potentially actionable target for fibrosis treatment. LAY SUMMARY: We show that the enzyme carnitine palmitoyltransferase 1A (CPT1A) is elevated in hepatic stellate cells (HSCs) in patients with fibrosis and mouse models of fibrosis, and that CPT1A induces the activation of these cells. Inhibition of CPT1A ameliorates fibrosis by preventing the activation of HSCs.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Células Estrelladas Hepáticas , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Colina , Ácidos Grasos/metabolismo , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Ratones
10.
Anal Chem ; 94(2): 1333-1341, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34985268

RESUMEN

Proton nuclear magnetic resonance (NMR) N-acetyl signals (Glyc) from glycoproteins and supramolecular phospholipids composite peak (SPC) from phospholipid quaternary nitrogen methyls in subcompartments of lipoprotein particles) can give important systemic metabolic information, but their absolute quantification is compromised by overlap with interfering resonances from lipoprotein lipids themselves. We present a J-Edited DIffusional (JEDI) proton NMR spectroscopic approach to selectively augment signals from the inflammatory marker peaks Glyc and SPCs in blood serum NMR spectra, which enables direct integration of peaks associated with molecules found in specific compartments. We explore a range of pulse sequences that allow editing based on peak J-modulation, translational diffusion, and T2 relaxation time and validate them for untreated blood serum samples from SARS-CoV-2 infected patients (n = 116) as well as samples from healthy controls and pregnant women with physiological inflammation and hyperlipidemia (n = 631). The data show that JEDI is an improved approach to selectively investigate inflammatory signals in serum and may have widespread diagnostic applicability to disease states associated with systemic inflammation.


Asunto(s)
COVID-19 , Protones , Biomarcadores , Femenino , Glicoproteínas , Humanos , Inflamación , Espectroscopía de Resonancia Magnética , Fosfolípidos , Embarazo , SARS-CoV-2 , Suero
11.
Anal Chem ; 94(10): 4426-4436, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230805

RESUMEN

SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Adulto , Biomarcadores , COVID-19/complicaciones , COVID-19/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Humanos , Lipoproteínas , Fosfolípidos , Factores de Riesgo , SARS-CoV-2 , Espectrometría de Masas en Tándem/métodos , Síndrome Post Agudo de COVID-19
12.
Hepatology ; 74(1): 148-163, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33284502

RESUMEN

BACKGROUND AND AIMS: The liver plays a central role in all metabolic processes in the body. However, precise characterization of liver metabolism is often obscured by its inherent complexity. Phosphorylated metabolites occupy a prominent position in all anabolic and catabolic pathways. Here, we develop a 31 P nuclear magnetic resonance (NMR)-based method to study the liver "phosphorome" through the simultaneous identification and quantification of multiple hydrophilic and hydrophobic phosphorylated metabolites. APPROACH AND RESULTS: We applied this technique to define the metabolic landscape in livers from a mouse model of the rare disease disorder congenital erythropoietic porphyria (CEP) as well as two well-known murine models of nonalcoholic steatohepatitis: one genetic, methionine adenosyltransferase 1A knockout mice, and the other dietary, mice fed a high-fat choline-deficient diet. We report alterations in the concentrations of phosphorylated metabolites that are readouts of the balance between glycolysis, gluconeogenesis, the pentose phosphate pathway, the tricarboxylic acid cycle, and oxidative phosphorylation and of phospholipid metabolism and apoptosis. Moreover, these changes correlate with the main histological features: steatosis, apoptosis, iron deposits, and fibrosis. Strikingly, treatment with the repurposed drug ciclopirox improves the phosphoromic profile of CEP mice, an effect that was mirrored by the normalization of liver histology. CONCLUSIONS: In conclusion, these findings indicate that NMR-based phosphoromics may be used to unravel metabolic phenotypes of liver injury and to identify the mechanism of drug action.


Asunto(s)
Hígado/metabolismo , Metaboloma/fisiología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/efectos de los fármacos , Hígado/patología , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Ratones , Ratones Transgénicos , Modelos Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Fósforo , Fosforilación/efectos de los fármacos
13.
Hepatology ; 73(2): 606-624, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32329085

RESUMEN

BACKGROUND AND AIMS: G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its contribution to the pathophysiology of nonalcoholic fatty liver disease (NAFLD) remains unknown. APPROACH AND RESULTS: We measured (1) GPR55 expression in the liver of patients with NAFLD compared with individuals without obesity and without liver disease, as well as animal models with steatosis and nonalcoholic steatohepatitis (NASH), and (2) the effects of LPI and genetic disruption of GPR55 in mice, human hepatocytes, and human hepatic stellate cells. Notably, we found that circulating LPI and liver expression of GPR55 were up-regulated in patients with NASH. LPI induced adenosine monophosphate-activated protein kinase activation of acetyl-coenzyme A carboxylase (ACC) and increased lipid content in human hepatocytes and in the liver of treated mice by inducing de novo lipogenesis and decreasing ß-oxidation. The inhibition of GPR55 and ACCα blocked the effects of LPI, and the in vivo knockdown of GPR55 was sufficient to improve liver damage in mice fed a high-fat diet and in mice fed a methionine-choline-deficient diet. Finally, LPI promoted the initiation of hepatic stellate cell activation by stimulating GPR55 and activation of ACC. CONCLUSIONS: The LPI/GPR55 system plays a role in the development of NAFLD and NASH by activating ACC.


Asunto(s)
Lisofosfolípidos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Receptores de Cannabinoides/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Adulto , Anciano , Animales , Biopsia , Agonistas de Receptores de Cannabinoides/farmacología , Línea Celular , Estudios de Cohortes , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Células Estrelladas Hepáticas , Hepatocitos , Humanos , Lipogénesis/efectos de los fármacos , Hígado/patología , Lisofosfolípidos/sangre , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/sangre , Obesidad/metabolismo , Receptores de Cannabinoides/genética , Regulación hacia Arriba
14.
NMR Biomed ; 35(2): e4637, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34708437

RESUMEN

COVID-19 is a systemic infectious disease that may affect many organs, accompanied by a measurable metabolic dysregulation. The disease is also associated with significant mortality, particularly among the elderly, patients with comorbidities, and solid organ transplant recipients. Yet, the largest segment of the patient population is asymptomatic, and most other patients develop mild to moderate symptoms after SARS-CoV-2 infection. Here, we have used NMR metabolomics to characterize plasma samples from a cohort of the abovementioned group of COVID-19 patients (n = 69), between 3 and 10 months after diagnosis, and compared them with a set of reference samples from individuals never infected by the virus (n = 71). Our results indicate that half of the patient population show abnormal metabolism including porphyrin levels and altered lipoprotein profiles six months after the infection, while the other half show little molecular record of the disease. Remarkably, most of these patients are asymptomatic or mild COVID-19 patients, and we hypothesize that this is due to a metabolic reflection of the immune response stress.


Asunto(s)
COVID-19/metabolismo , Lipidómica , Espectroscopía de Resonancia Magnética/métodos , Metabolómica , SARS-CoV-2 , COVID-19/inmunología , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Humanos
15.
J Proteome Res ; 20(8): 4139-4152, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34251833

RESUMEN

Quantitative plasma lipoprotein and metabolite profiles were measured on an autonomous community of the Basque Country (Spain) cohort consisting of hospitalized COVID-19 patients (n = 72) and a matched control group (n = 75) and a Western Australian (WA) cohort consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. Spanish samples were measured in two laboratories using one-dimensional (1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients and healthy controls from both populations were modeled and cross-projected to estimate the biological similarities and validate biomarkers. Using the top 15 most discriminatory variables enabled construction of a cross-predictive model with 100% sensitivity and specificity (within populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable for the study of the comparative pathology of COVID-19 via plasma phenotyping.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , Biomarcadores , Humanos , Lipoproteínas
16.
J Am Chem Soc ; 143(34): 13895-13907, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406757

RESUMEN

We report the structure and charge transport properties of a novel solid-state proton conductor obtained by acid-base chemistry via proton transfer from 12-tungstophosphoric acid to imidazole. The resulting material (henceforth named Imid3WP) is a solid salt hydrate that, at room temperature, includes four water molecules per structural unit. To our knowledge, this is the first attempt to tune the properties of a heteropolyacid-based solid-state proton conductor by means of a mixture of water and imidazole, interpolating between water-based and ionic liquid-based proton conductors of high thermal and electrochemical stability. The proton conductivity of Imid3WP·4H2O measured at truly anhydrous conditions reads 0.8 × 10-6 S cm-1 at 322 K, which is higher than the conductivity reported for any other related salt hydrate, despite the lower hydration. In the pseudoanhydrous state, that is, for Imid3WP·2H2O, the proton conductivity is still remarkable and, judging from the low activation energy (Ea = 0.26 eV), attributed to structural diffusion of protons. From complementary X-ray diffraction data, vibrational spectroscopy, and solid-state NMR experiments, the local structure of this salt hydrate was resolved, with imidazolium cations preferably orienting flat on the surface of the tungstophosphate anions, thus achieving a densely packed solid material, and water molecules of hydration that establish extremely strong hydrogen bonds. Computational results confirm these structural details and also evidence that the path of lowest energy for the proton transfer involves primarily imidazole and water molecules, while the proximate Keggin anion contributes with reducing the energy barrier for this particular pathway.

17.
Hepatology ; 72(5): 1682-1700, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32080887

RESUMEN

BACKGROUND AND AIMS: Forkhead box M1 (FOXM1) and nuclear factor kappa B (NF-ĸB) are oncogenic drivers in liver cancer that positively regulate each other. We showed that methionine adenosyltransferase 1A (MAT1A) is a tumor suppressor in the liver and inhibits NF-ĸB activity. Here, we examined the interplay between FOXM1/NF-κB and MAT1A in liver cancer. APPROACH AND RESULTS: We examined gene and protein expression, effects on promoter activities and binding of proteins to promoter regions, as well as effects of FOXM1 inhibitors T0901317 (T0) and forkhead domain inhibitory-6 (FDI-6) in vitro and in xenograft and syngeneic models of liver cancer. We found, in both hepatocellular carcinoma and cholangiocarcinoma, that an induction in FOXM1 and NF-κB expression is accompanied by a fall in MATα1 (protein encoded by MAT1A). The Cancer Genome Atlas data set confirmed the inverse correlation between FOXM1 and MAT1A. Interestingly, FOXM1 directly interacts with MATα1 and they negatively regulate each other. In contrast, FOXM1 positively regulates p50 and p65 expression through MATα1, given that the effect is lost in its absence. FOXM1, MATα1, and NF-κB all bind to the FOX binding sites in the FOXM1 and MAT1A promoters. However, binding of FOXM1 and NF-κB repressed MAT1A promoter activity, but activated the FOXM1 promoter. In contrast, binding of MATα1 repressed the FOXM1 promoter. MATα1 also binds and represses the NF-κB element in the presence of p65 or p50. Inhibiting FOXM1 with either T0 or FDI-6 inhibited liver cancer cell growth in vitro and in vivo. However, inhibiting FOXM1 had minimal effects in liver cancer cells that do not express MAT1A. CONCLUSIONS: We have found a crosstalk between FOXM1/NF-κB and MAT1A. Up-regulation in FOXM1 lowers MAT1A, but raises NF-κB, expression, and this is a feed-forward loop that enhances tumorigenesis.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/genética , Metionina Adenosiltransferasa/genética , FN-kappa B/genética , Proteínas Supresoras de Tumor/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Retroalimentación Fisiológica/efectos de los fármacos , Proteína Forkhead Box M1/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hepatocitos , Humanos , Hidrocarburos Fluorados/administración & dosificación , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Metionina Adenosiltransferasa/metabolismo , Ratones , Ratones Noqueados , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Piridinas/administración & dosificación , S-Adenosilmetionina/metabolismo , Sulfonamidas/administración & dosificación , Tiofenos/administración & dosificación , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cardiovasc Diabetol ; 20(1): 155, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34320987

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is a multimorbid long-term condition without consensual medical definition and a diagnostic based on compatible symptomatology. Here we have investigated the molecular signature of MetS in urine. METHODS: We used NMR-based metabolomics to investigate a European cohort including urine samples from 11,754 individuals (18-75 years old, 41% females), designed to populate all the intermediate conditions in MetS, from subjects without any risk factor up to individuals with developed MetS (4-5%, depending on the definition). A set of quantified metabolites were integrated from the urine spectra to obtain metabolic models (one for each definition), to discriminate between individuals with MetS. RESULTS: MetS progression produces a continuous and monotonic variation of the urine metabolome, characterized by up- or down-regulation of the pertinent metabolites (17 in total, including glucose, lipids, aromatic amino acids, salicyluric acid, maltitol, trimethylamine N-oxide, and p-cresol sulfate) with some of the metabolites associated to MetS for the first time. This metabolic signature, based solely on information extracted from the urine spectrum, adds a molecular dimension to MetS definition and it was used to generate models that can identify subjects with MetS (AUROC values between 0.83 and 0.87). This signature is particularly suitable to add meaning to the conditions that are in the interface between healthy subjects and MetS patients. Aging and non-alcoholic fatty liver disease are also risk factors that may enhance MetS probability, but they do not directly interfere with the metabolic discrimination of the syndrome. CONCLUSIONS: Urine metabolomics, studied by NMR spectroscopy, unravelled a set of metabolites that concomitantly evolve with MetS progression, that were used to derive and validate a molecular definition of MetS and to discriminate the conditions that are in the interface between healthy individuals and the metabolic syndrome.


Asunto(s)
Síndrome Metabólico/orina , Metaboloma , Metabolómica , Espectroscopía de Protones por Resonancia Magnética , Adolescente , Adulto , Anciano , Biomarcadores/orina , Estudios de Casos y Controles , Progresión de la Enfermedad , Europa (Continente) , Femenino , Humanos , Masculino , Síndrome Metabólico/diagnóstico , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Urinálisis , Adulto Joven
19.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670179

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is the fifth enzyme in the tyrosine catabolism pathway. A deficiency in human FAH leads to hereditary tyrosinemia type I (HT1), an autosomal recessive disorder that results in the accumulation of toxic metabolites such as succinylacetone, maleylacetoacetate, and fumarylacetoacetate in the liver and kidney, among other tissues. The disease is severe and, when untreated, it can lead to death. A low tyrosine diet combined with the herbicidal nitisinone constitutes the only available therapy, but this treatment is not devoid of secondary effects and long-term complications. In this study, we targeted FAH for the first-time to discover new chemical modulators that act as pharmacological chaperones, directly associating with this enzyme. After screening several thousand compounds and subsequent chemical redesign, we found a set of reversible inhibitors that associate with FAH close to the active site and stabilize the (active) dimeric species, as demonstrated by NMR spectroscopy. Importantly, the inhibitors are also able to partially restore the normal phenotype in a newly developed cellular model of HT1.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/farmacología , Hidrolasas/antagonistas & inhibidores , Hidrolasas/metabolismo , Tirosinemias/tratamiento farmacológico , Tirosinemias/enzimología , Animales , Dominio Catalítico , Inhibidores Enzimáticos/química , Células HEK293 , Humanos , Hidrolasas/genética , Ratones , Tirosinemias/genética
20.
J Proteome Res ; 19(10): 4163-4178, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32966080

RESUMEN

Proteoforms containing post-translational modifications (PTMs) represent a degree of functional diversity only harnessed through analytically precise simultaneous quantification of multiple PTMs. Here we present a method to accurately differentiate an unmodified peptide from its PTM-containing counterpart through data-independent acquisition-mass spectrometry, leveraging small precursor mass windows to physically separate modified peptidoforms from each other during MS2 acquisition. We utilize a lysine and arginine PTM-enriched peptide assay library and site localization algorithm to simultaneously localize and quantify seven PTMs including mono-, di-, and trimethylation, acetylation, and succinylation in addition to total protein quantification in a single MS run without the need to enrich experimental samples. To evaluate biological relevance, this method was applied to liver lysate from differentially methylated nonalcoholic steatohepatitis (NASH) mouse models. We report that altered methylation and acetylation together with total protein changes drive the novel hypothesis of a regulatory function of PTMs in protein synthesis and mRNA stability in NASH.


Asunto(s)
Hepatopatías , Lisina , Acetilación , Animales , Arginina , Lisina/metabolismo , Ratones , Procesamiento Proteico-Postraduccional , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA