Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Water Sci Technol ; 89(6): 1583-1594, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557720

RESUMEN

Low-energy nitrogen removal from ammonium-rich wastewater is crucial in preserving the water environment. A one-stage nitritation/anammox process with two inflows treating ammonium-containing wastewater, supplied from inside and outside the wound filter, is expected to stably remove nitrogen. Laboratory-scale reactors were operated using different start-up strategies; the first involved adding nitritation inoculum after anammox biomass formation in the filter, which presented a relatively low nitrogen removal rate (0.171 kg N/m3 · d), at a nitrogen loading rate of 1.0 kg N/m3 · d. Conversely, the second involved the gradual cultivation of anammox and nitritation microorganisms, which increased the nitrogen removal rate (0.276 kg N/m3 · d). Furthermore, anammox (Candidatus Brocadia) and nitritation bacteria (Nitrosomonadaceae) coexisted in the biofilm formed on the filter surface. The abundance of nitritation bacteria (10.5%) in the reactor biofilm using the second start-up strategy was higher than that using the first (3.7%). Thus, the two-inflow nitritation/anammox process effectively induced habitat segregation using a suitable start-up strategy.


Asunto(s)
Compuestos de Amonio , Microbiota , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Reactores Biológicos/microbiología , Bacterias , Biopelículas , Nitrógeno , Aguas del Alcantarillado , Desnitrificación
2.
J Water Health ; 21(8): 1032-1050, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37632379

RESUMEN

The dissemination of antimicrobial resistance in the environment is an emerging global health problem. Wastewater treatment effluent and combined sewer overflows (CSOs) are major sources of antimicrobial resistance in urban rivers. This study aimed to clarify the effect of municipal wastewater treatment effluent and CSO on antimicrobial resistance genes (ARGs), mobile gene elements, and the microbial community in an urban river. The ARG abundance per 16S-based microbial population in the target river was 0.37-0.54 and 0.030-0.097 during the CSO event and dry weather, respectively. During the CSO event, the antimicrobial resistome in the river shifted toward a higher abundance of ARGs to clinically important drug classes, including macrolide, fluoroquinolone, and ß-lactam, whereas ARGs to sulfonamide and multidrug by efflux pump were relatively abundant in dry weather. The abundance of intI1 and tnpA genes were highly associated with the total ARG abundance, suggesting their potential application as an indicator for estimating resistome contamination. Increase of prophage during the CSO event suggested that impact of CSO has a greater potential for horizontal gene transfer (HGT) via transduction. Consequently, CSO not only increases the abundance of ARGs to clinically important antimicrobials but also possibly enhances potential of HGT in urban rivers.


Asunto(s)
Antiinfecciosos , Microbiota , Ríos , Antibacterianos/farmacología , Macrólidos
3.
J Environ Manage ; 307: 114459, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104700

RESUMEN

Low energy consumption treatment of high-strength wastewater is crucial in controlling groundwater pollution and eutrophication in closed waterbodies. In this study, the sulfate reduction, denitrification/anammox, and partial nitrification (SRDAPN) process, which is an effective organic carbon and nitrogen removal process with low energy consumption for low strength wastewater, was applied to treat livestock wastewater with high COD and sulfate concentration, and microbial reaction and community were examined using an anaerobic-anoxic biological filter reactor that simulates circulation from an aerobic reactor. At a total organic carbon loading rate of 2.7-5.8 kgC/m3·day, sulfate reduction and methane production occurred simultaneously in the anaerobic column of the reactor. Specifically, sulfate reduction resulted in organic matter removal rates of 38 and 26% at ambient temperature and 25 °C, respectively. Furthermore, both heterotrophic and autotrophic denitrification occurred in the anoxic column, and when the organic loading rate in the anoxic reactor was below 0.2 kgC/m3·day, 33%-37% of ammonium and 33%-34% of nitrite were removed by the anammox reaction. Heterotrophic denitrification bacteria (Thauera, Comamonas, and Denitratisoma) and sulfur denitrification bacteria (Sulfurimonas denitrificans) grew in the lower and middle parts of the anoxic column, whereas anammox bacteria (2.5% of Candidatus Brocadia at ambient temperature and 9.4% of Candidatus Kuenenia at 25 °C) grew in the upper part of the anoxic column. These results indicate that the SRDAPN process based on sulfur cycle and anammox is useful for treatment of high strength wastewater with low energy consumption.


Asunto(s)
Nitrificación , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Carbono , Desnitrificación , Nitrógeno/análisis , Oxidación-Reducción , Aguas del Alcantarillado , Sulfuros , Aguas Residuales/análisis
4.
Appl Microbiol Biotechnol ; 105(5): 2181-2193, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33555362

RESUMEN

Excess phosphorus in water supplies causes eutrophication, which degrades water quality. Hence, the efficient removal of phosphorus from wastewater represents a highly desirable process. Here, we evaluated the effect of sulfate concentration on enhanced biological phosphorus removal (EBPR), in which phosphorus is typically removed under anaerobic-oxic cycles, with sulfate reduction the predominant process in the anaerobic phase. Two sequencing batch EBPR reactors operated under high- (SBR-H) vs. low-sulfate (SBR-L) concentrations for 189 days and under three periods, i.e., start-up, sufficient acetate, and limited acetate. Under acetate-rich conditions, phosphorus removal efficiency was > 90% for both reactors; however, under acetate-limited conditions, only 34% and 91.3% of the phosphorus were removed for the SBR-L and the SBR-H, respectively. Metagenomic sequencing of the reactors showed that the relative abundance of the polyphosphate-accumulating and sulfur-reducing bacteria (SRB) was higher in the SBR-H, consistent with its higher phosphorus removal activity. Ten high-quality metagenome-assembled genomes, including one closely related to the genus Thiothrix disciformis (99.81% average amino acid identity), were recovered and predicted to simultaneously metabolize phosphorus and sulfur by the presence of phosphorus (ppk, ppx, pst, and pit) and sulfur (sul, sox, dsr, sqr, apr, cys, and sat) metabolism marker genes. The omics-based analysis provided a holistic view of the microbial ecosystem in the EBPR process and revealed that SRB and Thiothrix play key roles in the presence of high sulfate.Key points• We observed high phosphorus-removal efficiency in high-sulfate EBPR.• Metagenome-based analysis revealed sulfate-related metabolic mechanisms in EBPR.• SRB and PAOs showed interrelationships in the EBPR-sulfur systems.


Asunto(s)
Reactores Biológicos , Fósforo , Ecosistema , Gammaproteobacteria , Metagenoma , Aguas del Alcantarillado , Sulfatos
5.
J Water Health ; 19(4): 657-670, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34371501

RESUMEN

The management of pathogenic bacteria in waterways is a public health issue. Here, we investigated the concentrations of potentially pathogenic bacteria, Arcobacter spp. and Campylobacter spp., and Escherichia coli, by quantifying species-specific genes in surface water samples from canals and the Chao Phraya River from June 2017 to June 2018 in Bangkok, Thailand. We assessed the relationship between the specific bacterial concentrations, water quality, and seasonal changes. Arcobacter spp. were detected at high density in all samples and showed seasonal fluctuations according to analyses based on 16S rDNA and the invasion gene ciaB. High levels of 16S rDNA and dut gene of E. coli were detected in the polluted drainage canals. A high correlation was observed between E. coli and chemical and biochemical oxygen demand (COD and BOD), suggesting that untreated domestic wastewater was the source of the E. coli. In contrast, Arcobacter spp. were detected with high density even in water samples with relatively low COD, suggesting that Arcobacter spp. are more likely than E. coli to survive in the water environment. The analysis of 16S rDNA and ciaB gene sequence analyses indicated that the Arcobacter spp. isolated from the drainage canals were A. butzleri and A. cryaerophilus.


Asunto(s)
Arcobacter , Arcobacter/genética , Escherichia coli/genética , Ríos , Especificidad de la Especie , Tailandia
6.
J Environ Manage ; 298: 113541, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426222

RESUMEN

Extracellular antibiotic resistance genes (eARG) are considered to play an important role in spread of antimicrobial resistance (AMR) in wastewater treatment and water environment. Membrane bioreactor (MBR) reportedly has better removal of ARGs in wastewater than conventional activated sludge process. However, removal of eARG is possibly limited because eARG is small to pass through microfiltration (MF) membranes. To evaluate potential removal of eARG in MBR, this study aimed to understand the initial behaviors of eARG received in MBR. The recombinant plasmid with artificial marker gene was spiked in lab-scale MBR to trace fate of eARG in MBR. Among 10 10 copies/L of the spiked gene, 2.6 × 109 copies/L was adsorbed on sludge particles at 6 h after spiking, while only 2.2 × 108-3.6 × 108 copies/L of the spiked gene was remained but constant in sludge liquid phase from 6 until 48 h. This result suggests that adsorption on sludge particles served as the main mechanism to govern the initial fate of eARG in MBR. Meanwhile, the spiked gene concentrations in membrane permeate was lower than sludge liquid phase and decreased overtime, suggesting retention of eARG in membrane filtration. Total LRV of the spiked extracellular gene were 3.4 ± 0.8 log at 48 h after spiking. LRV by adsorption corresponded to 1.7 ± 0.7 log constantly since 3 h after spiking, while LRV by membrane filtration increased from 0 to 1.7 ± 0.6 log. Linear correlation of LRV by membrane filtration with transmembrane pressure (TMP) suggested that foulant deposition on membrane governs removal of eARG by membrane filtration in MBR.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Plásmidos/genética , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
7.
J Environ Manage ; 255: 109844, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760300

RESUMEN

A new pre-treatment process for excess sludge is proposed to increase methane production and recover phosphorus by adding waste plaster board as calcium sulfate. The content of calcium sulfate in the plaster granules (PG) used in this study is 99%. When PG and calcium sulfate are added to the excess sludge generated from a municipal wastewater treatment plant, acetate production is enhanced as per sulfate reduction and phosphorus release is reduced via the formation of calcium phosphate. In the continuous pre-treatment experiment performed at 25 °C and for 10 days of sludge retention time (SRT) using calcium sulfate, 1935 ±â€¯395 mg/L of acetate is produced with 1070 ±â€¯255 mg/L of sulfate, which is reduced. Desulfobulbus spp., which can oxidize organic matter to acetate incompletely, have been observed in the pre-treated sludge. The pre-treated sludge has subsequently been used for methophiric anaerobic digestion. The methane yield from the pre-treated sludge is found to be 1.2 times that of the non-pretreated sludge at an SRT of 30 days, indicating that the pre-treatment using PG can improve methane production. Phosphorus is released from the non-pretreated sludge in the digester. Nevertheless, a decrease in phosphorus content has been observed, resulting in the digested sludge containing calcium phosphate that is useful for agriculture.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Eliminación de Residuos Líquidos , Aguas Residuales
8.
J Environ Manage ; 222: 155-163, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29843088

RESUMEN

A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m-3d-1, 0.3 kg-NH4+-N m-3d-1, and 0.12 kg-N m-3d-1. Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal.


Asunto(s)
Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Bacterias , Nitrificación , Nitrógeno/química , Nitrógeno/aislamiento & purificación , Eliminación de Residuos Líquidos
9.
Artículo en Inglés | MEDLINE | ID: mdl-29775125

RESUMEN

In this study, a continuous flow experiment was conducted in which a lab-scale upflow anaerobic sludge blanket (UASB) reactor at psychrophilic conditions (18-19°C) was fed with artificial wastewater, containing tetramethylammonium hydroxide (TMAH) and isoplophyl alcohol (IPA), from the electronics industry. This was done to evaluate process performance and microbial properties of the granular sludge that was retained in the reactor. The inoculated granular sludge was precultured with IPA containing wastewater but not TMAH; as a result, no degradation was observed in 30 days of operation. To enhance degradation, the reactor was seeded with 2% weight of the TMAH-enriched sludge, after which TMAH was enhanced. Consequently, the total COD removal efficiency reached 90% at an organic loading rate of 7.5 kg COD/m3/day. The TMAH inflow decreased the diameter of the retained granular sludge, but the sludge retained its settleability. The proliferation of the Methanometylovorans microorganisms present in the enrichment culture was confirmed by analysis of the 16 S rRNA gene in the retained sludge. In addition, TMAH degradation was inhibited by addition chloroform, a methanogen inhibitor. These results suggested species in the genus Methanometylovorans in the granular sludge contributed significantly to methanogenic TMAH degradation.


Asunto(s)
2-Propanol/química , Metano/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Aguas del Alcantarillado/microbiología , Aguas Residuales , Aclimatación/efectos de los fármacos , Anaerobiosis/efectos de los fármacos , Archaea/crecimiento & desarrollo , Archaea/metabolismo , Reactores Biológicos/microbiología , Etanol/química , Etanolamina/química , Euryarchaeota/crecimiento & desarrollo , Euryarchaeota/metabolismo , Metano/química , Temperatura , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aguas Residuales/microbiología
10.
Int J Syst Evol Microbiol ; 66(7): 2635-2642, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27098854

RESUMEN

A novel, strictly anaerobic, short rod-shaped bacterium, designated strain TBC1T, was isolated from methanogenic granular sludge in a full-scale mesophilic upflow anaerobic sludge blanket reactor treating high-strength starch-based organic wastewater. Cells of this strain were 2-4 µm long and 0.4-0.6 µm wide. They were non-motile and Gram-stain-negative. The optimum growth temperature was 30-37 °C, with a range of 20-40 °C. The optimum pH for growth was around pH 7.0, while growth occurred in a range of pH 6.5-9.0. Strain TBC1T grew chemo-organotrophically on a narrow range of carbohydrates under anaerobic conditions. Yeast extract was required for its growth. The major fermentative end products from glucose, supplemented with yeast extract, were acetate, malate, propionate, formate and hydrogen. Doubling time under optimal growth conditions was estimated to be 1 day. The DNA G+C content of strain TBC1T was 49.2 mol% as determined by HPLC. Major cellular fatty acids were C16 : 0, C18 : 0, C16 : 1ω9c and C18 : 1ω9c. Based on its 16S rRNA gene sequence, strain TBC1T was shown to represent a distinct lineage at the family level in the phylum Bacteroidetes. Among previously described species of this phylum, Mucilaginibacter boryungensis BDR-9T (Sphingobacteriaceae) displayed the highest sequence similarity (85.9 %) with strain TBC1T. Phylogenomic analyses using 38-83 single copy marker genes also supported the novelty of strain TBC1T at the family level. Based on its characteristics, strain TBC1T (=JCM 30898T=DSM 100618T) is considered to be the type strain of a novel species of a new genus, Lentimicrobium saccharophilum gen. nov., sp. nov. A new family, Lentimicrobiaceae fam. nov., is also proposed encompassing the strain and related environmental 16S rRNA gene clone sequences.


Asunto(s)
Bacteroidetes/clasificación , Filogenia , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Int J Syst Evol Microbiol ; 66(2): 988-996, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637817

RESUMEN

A novel obligately anaerobic bacterium, designated strain TC1T, was isolated from methanogenic granular sludge in a full-scale mesophilic upflow anaerobic sludge blanket reactor treating high-strength starch-based wastewater. Cells had a multicellular filamentous morphology, stained Gram-negative and were non-motile. The filaments were flexible, generally >100 µm long and 0.3-0.4 µm wide. Growth of the isolate was observed at 25-43 °C (optimum 37 °C) and pH 6.0-8.5 (optimum pH 7.0). Strain TC1T grew chemo-organotrophically on a range of carbohydrates under anaerobic conditions. Yeast extract was required for growth. The major fermentative end products of glucose, supplemented with yeast extract, were acetate, lactate, succinate, propionate, formate and hydrogen. Co-cultivation with the hydrogenotrophic methanogen Methanospirillum hungatei DSM 864T enhanced growth of the isolate. The DNA G+C content was determined experimentally to be 42.1 mol%. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C17 : 0 3-OH. Based on 16S rRNA gene sequence analysis, strain TC1T belonged to the class Anaerolineae in the phylum Chloroflexi, in which Ornatilinea apprima P3M-1T was its closest phylogenetic relative (88.3 % nucleotide identity). Phylogenomic analyses using 38 and 83 single-copy marker genes also supported the novelty of strain TC1T at least at the genus level. Based on phylogenetic, genomic and phenotypic characteristics, we propose that strain TC1T represents a novel species of a new genus, for which we suggest the name Flexilinea flocculi gen. nov., sp. nov. The type strain of Flexilinea flocculi is strain TC1T ( = JCM 30897T = CGMCC 1.5202T).

12.
J Environ Manage ; 151: 200-9, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25576697

RESUMEN

A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions.


Asunto(s)
Contaminantes Atmosféricos/química , Bacterias Anaerobias/fisiología , Reactores Biológicos , Metano/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/instrumentación , Contaminantes Atmosféricos/aislamiento & purificación , Humanos , Metano/aislamiento & purificación , Oxidación-Reducción , Estaciones del Año , Temperatura , Eliminación de Residuos Líquidos/métodos
13.
Microbiol Resour Announc ; 13(4): e0106123, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38497622

RESUMEN

Information about the microbiota in marine sediments is important because the microbiota and their activities in sediments affect the surrounding marine environment. To evaluate the microbial diversity, we performed 16S rRNA gene amplicon sequencing on sediment samples from 19 stations in Tsukumo Bay, the northern area of Noto Peninsula, Japan.

14.
Environ Microbiol Rep ; 15(6): 497-511, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37465846

RESUMEN

The method of spiking synthetic internal standard genes (ISGs) to samples for amplicon sequencing, generating sequences and converting absolute gene numbers from read counts has been used only for phylogenetic markers and has not been applied to functional markers. In this study, we developed ISGs, including gene sequences of the 16S rRNA, pmoA, encoding a subunit of particulate methane monooxygenase and amoA, encoding a subunit of ammonia monooxygenase. We added ISGs to the samples, amplified the target genes and performed amplicon sequencing. For the mock community, the copy numbers converted from read counts using ISGs were equivalent to those obtained by the quantitative real-time polymerase chain reaction (4.0 × 104 versus 4.1 × 104 and 3.0 × 103 versus 4.0 × 103 copies µL-DNA-1 for 16S rRNA and pmoA genes, respectively), but we also identified underestimation, possibly due to primer coverage (7.8 × 102 versus 3.7 × 103 µL-DNA-1 for amoA gene). We then applied this method to environmental samples and analysed phylogeny, functional diversity and absolute quantities. One Methylocystis population was most abundant in the sludge samples [16S rRNA gene (3.8 × 109 copies g-1 ) and the pmoA gene (2.3 × 109 copies g-1 )] and were potentially interrelated. This study demonstrates that ISG spiking is useful for evaluating sequencing data processing and quantifying functional markers.


Asunto(s)
ADN , Genes Bacterianos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Bioresour Technol ; 376: 128834, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36889603

RESUMEN

Rice straw is a useful lignocellulosic biomass for controlling ammonia inhibition in the thermophilic anaerobic digestion of sewage sludge. However, it is challenging to procure rice straw throughout the year because of its seasonal production. This study investigated methane production in a laboratory-scale digester by gradually decreasing rice straw addition to solid thermophilic sewage sludge digestion. The decrease in rice straw did not accumulate volatile fatty acids and stabilized methane production. Even with increased sludge concentration without rice straw, methane production continued under high ammonia conditions. Ammonia tolerance of the digested sludge of the experimental digester was higher than that of conventionally digested sludge. The cellulose-degrading bacteria Clostridia and high ammonia-resistant archaea Methanosarcina were dominant in the experimentally digested sludge. The community was maintained for over 200 days after discontinuing the rice straw supply. These findings suggest that anaerobic digestion initiation with rice straw is appropriate to facilitate ammonia-tolerant communities.


Asunto(s)
Microbiota , Oryza , Aguas del Alcantarillado/microbiología , Amoníaco , Reactores Biológicos/microbiología , Biomasa , Anaerobiosis , Metano , Digestión
16.
Water Res ; 210: 117986, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34974343

RESUMEN

Microbial ammonia oxidation is the initial nitrification step used in biological nitrogen-removal during water treatment processes, and the discovery of complete ammonia-oxidizing (comammox) bacteria added a novel member to this functional group. It is important to identify and understand the predominant microorganisms responsible for ammonium removal in biotechnological process design and optimization. In this study, we used a full-scale bioreactor to treat ammonium in groundwater (9.3 ± 0.5 mg NH4+-N/L) and investigated the key ammonia-oxidizing prokaryotes present. The groundwater ammonium was stably and efficiently oxidized throughout ∼700 days of bioreactor operation. 16S rRNA gene amplicon sequencing of the bioreactor community showed a high abundance of Nitrospira (12.5-45.9%), with the dominant sequence variant (3.5-37.8%) most closely related to Candidatus Nitrospira nitrosa. Furthermore, analyses of amoA, the marker gene for ammonia oxidation, indicated the presence of two distinct comammox Nitrospira populations, however, the relative abundance of only one of these populations was strongly correlated to ammonia oxidation rates and was robustly expressed. After 380 days of operation copper wires were immersed into the reactor at 0.04-0.06 m2/m3 tank, which caused a gradual abundance increase of one discrete comammox Nitrospira population. However, further increase of the copper dosing (0.08 m2/m3 tank) inverted the most abundant ammonia-oxidizing population to Nitrosomonas sp. These results indicate that comammox Nitrospira were capable of efficient ammonium removal in groundwater without exogenous nutrients, but copper addition can stimulate comammox Nitrospira or lead to dominance of Nitrosomonas depending on dosage.


Asunto(s)
Amoníaco , Agua Subterránea , Bacterias/genética , Reactores Biológicos , Cobre , ARN Ribosómico 16S/genética
17.
Microbes Environ ; 37(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342121

RESUMEN

Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01-80%) and ammonium concentrations (0.001-2,000| |mg N L-1) and pH 4-7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4-5), whereas Type I was dominant around neutral pH (6-7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH4+ concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.


Asunto(s)
Gammaproteobacteria , Methylococcaceae , Gammaproteobacteria/genética , Metano , Methylococcaceae/genética , Filogenia , ARN Ribosómico 16S/genética
18.
Sci Rep ; 11(1): 6567, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753787

RESUMEN

Nitrogen fertiliser is manufactured using the industrial Haber-Bosch process, although it is extremely energy-consuming. One sustainable alternative technology is the electrochemical promotion of biological nitrogen fixation (BNF). This study reports the promotion of BNF activity of anaerobic microbial consortia by humin, a solid-phase humic substance, at any pH, functioning as an extracellular electron mediator, to levels of 5.7-11.8 times under nitrogen-deficient conditions. This was evidenced by increased acetylene reduction activity and total nitrogen content of the consortia. Various humins from different origins promoted anaerobic BNF activity, although the degree of promotion differed. The promotion effected by humin differed from the effects of chemical reducing agents and the effects of supplemental micronutrients and vitamins. The promotion of anaerobic BNF activity by only reduced humin without any other electron donor suggested that humin did not serve as organic carbon source but as extracellular electron mediator, for electron donation to the nitrogen-fixing microorganisms. The next generation sequencing (NGS) of partial 16S rRNA genes showed the predominance of Clostridiales (Firmicutes) in the consortia. These findings suggest the effectiveness of humin as a solid-phase extracellular electron mediator for the promotion of anaerobic BNF activity, potentially to serve for the basis for a sustainable technology.

19.
Microbiol Resour Announc ; 10(46): e0098421, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792378

RESUMEN

Information about sediment microbiota affected by sediment microbial fuel cells (SMFC) is limited. A laboratory-scale SMFC was applied to a eutrophic lake sediment under closed-circuit/open-circuit conditions. We analyzed the prokaryotes in the sediment adhering to the anode material. The archaeal family Methanoperedenaceae was a predominant group under closed-circuit conditions.

20.
Sci Rep ; 10(1): 476, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949200

RESUMEN

To address the problem of marine pollution from discarded plastics, we developed a highly biodegradable woody film, with almost the same components as wood, from the formic acid solution of ball-milled wood. We found that the woody film was not easily degraded by cultured solution of hand bacteria (phylum Proteobacteria was dominant). However, the film was easily biodegraded when in cultured solution of soil (Firmicutes, especially class Bacilli, was dominant) for 4 weeks at 37 °C, or when buried in the soil itself, both under aerobic conditions (Acidobacteria and Proteobacteria were dominant) for 40 days at room temperature and under anaerobic conditions (Firmicutes, especially family Ruminococcaceae, was dominant) for 5 weeks at 37 °C. Moreover, when film was buried in the soil, more carbon dioxide was generated than from soil alone. Therefore, the film was not only brittle but formed of decomposable organic matter. We showed that the film does not decompose at the time of use when touched by the hand, but it decomposes easily when buried in the soil after use. We suggest that this biodegradable woody film can be used as a sustainable raw material in the future.


Asunto(s)
Bacterias/crecimiento & desarrollo , Plásticos Biodegradables/química , Biodegradación Ambiental , Ecosistema , Contaminación Ambiental/prevención & control , Solventes/química , Madera/química , Bacterias/clasificación , Biomasa , Dióxido de Carbono/metabolismo , Hidrólisis , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA