Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 296: 100267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33759783

RESUMEN

The study of extracellular phosphorylation was initiated in late 19th century when the secreted milk protein, casein, and egg-yolk protein, phosvitin, were shown to be phosphorylated. However, it took more than a century to identify Fam20C, which phosphorylates both casein and phosvitin under physiological conditions. This kinase, along with its family members Fam20A and Fam20B, defined a new family with altered amino acid sequences highly atypical from the canonical 540 kinases comprising the kinome. Fam20B is a glycan kinase that phosphorylates xylose residues and triggers peptidoglycan biosynthesis, a role conserved from sponges to human. The protein kinase, Fam20C, conserved from nematodes to humans, phosphorylates well over 100 substrates in the secretory pathway with overall functions postulated to encompass endoplasmic reticulum homeostasis, nutrition, cardiac function, coagulation, and biomineralization. The preferred phosphorylation motif of Fam20C is SxE/pS, and structural studies revealed that related member Fam20A allosterically activates Fam20C by forming a heterodimeric/tetrameric complex. Fam20A, a pseudokinase, is observed only in vertebrates. Loss-of-function genetic alterations in the Fam20 family lead to human diseases such as amelogenesis imperfecta, nephrocalcinosis, lethal and nonlethal forms of Raine syndrome with major skeletal defects, and altered phosphate homeostasis. Together, these three members of the Fam20 family modulate a diverse network of secretory pathway components playing crucial roles in health and disease. The overarching theme of this review is to highlight the progress that has been made in the emerging field of extracellular phosphorylation and the key roles secretory pathway kinases play in an ever-expanding number of cellular processes.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Quinasa de la Caseína I/química , Retículo Endoplásmico/metabolismo , Proteínas de la Matriz Extracelular/química , Homeostasis , Humanos , Miocardio/metabolismo , Fosforilación , Vías Secretoras , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato
2.
J Biol Chem ; 296: 100184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33310704

RESUMEN

Magnesium ions play a critical role in catalysis by many enzymes and contribute to the fidelity of DNA polymerases through a two-metal ion mechanism. However, specificity is a kinetic phenomenon and the roles of Mg2+ ions in each step in the catalysis have not been resolved. We first examined the roles of Mg2+ by kinetic analysis of single nucleotide incorporation catalyzed by HIV reverse transcriptase. We show that Mg.dNTP binding induces an enzyme conformational change at a rate that is independent of free Mg2+ concentration. Subsequently, the second Mg2+ binds to the closed state of the enzyme-DNA-Mg.dNTP complex (Kd = 3.7 mM) to facilitate catalysis. Weak binding of the catalytic Mg2+ contributes to fidelity by sampling the correctly aligned substrate without perturbing the equilibrium for nucleotide binding at physiological Mg2+ concentrations. An increase of the Mg2+ concentration from 0.25 to 10 mM increases nucleotide specificity (kcat/Km) 12-fold largely by increasing the rate of the chemistry relative to the rate of nucleotide release. Mg2+ binds very weakly (Kd ≤ 37 mM) to the open state of the enzyme. Analysis of published crystal structures showed that HIV reverse transcriptase binds only two metal ions prior to incorporation of a correct base pair. Molecular dynamics simulations support the two-metal ion mechanism and the kinetic data indicating weak binding of the catalytic Mg2+. Molecular dynamics simulations also revealed the importance of the divalent cation cloud surrounding exposed phosphates on the DNA. These results enlighten the roles of the two metal ions in the specificity of DNA polymerases.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Magnesio/metabolismo , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/química , VIH-1/química , VIH-1/metabolismo , Humanos , Cinética , Magnesio/química , Simulación de Dinámica Molecular , Conformación Proteica , Termodinámica
3.
Proc Natl Acad Sci U S A ; 116(49): 24881-24891, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31754034

RESUMEN

Dependence on the 26S proteasome is an Achilles' heel for triple-negative breast cancer (TNBC) and multiple myeloma (MM). The therapeutic proteasome inhibitor, bortezomib, successfully targets MM but often leads to drug-resistant disease relapse and fails in breast cancer. Here we show that a 26S proteasome-regulating kinase, DYRK2, is a therapeutic target for both MM and TNBC. Genome editing or small-molecule mediated inhibition of DYRK2 significantly reduces 26S proteasome activity, bypasses bortezomib resistance, and dramatically delays in vivo tumor growth in MM and TNBC thereby promoting survival. We further characterized the ability of LDN192960, a potent and selective DYRK2-inhibitor, to alleviate tumor burden in vivo. The drug docks into the active site of DYRK2 and partially inhibits all 3 core peptidase activities of the proteasome. Our results suggest that targeting 26S proteasome regulators will pave the way for therapeutic strategies in MM and TNBC.


Asunto(s)
Bortezomib/farmacología , Procesos Neoplásicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , TYK2 Quinasa/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Línea Celular Tumoral , Femenino , Edición Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mieloma Múltiple , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Neoplasias de la Mama Triple Negativas/patología , Quinasas DyrK
4.
Proc Natl Acad Sci U S A ; 115(32): 8155-8160, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29987021

RESUMEN

Curcumin, the active ingredient in Curcuma longa, has been in medicinal use since ancient times. However, the therapeutic targets and signaling cascades modulated by curcumin have been enigmatic despite extensive research. Here we identify dual-specificity tyrosine-regulated kinase 2 (DYRK2), a positive regulator of the 26S proteasome, as a direct target of curcumin. Curcumin occupies the ATP-binding pocket of DYRK2 in the cocrystal structure, and it potently and specifically inhibits DYRK2 over 139 other kinases tested in vitro. As a result, curcumin diminishes DYRK2-mediated 26S proteasome phosphorylation in cells, leading to reduced proteasome activity and impaired cell proliferation. Interestingly, curcumin synergizes with the therapeutic proteasome inhibitor carfilzomib to induce apoptosis in a variety of proteasome-addicted cancer cells, while this drug combination exhibits modest to no cytotoxicity to noncancerous cells. In a breast cancer xenograft model, curcumin treatment significantly reduces tumor burden in immunocompromised mice, showing a similar antitumor effect as CRISPR/Cas9-mediated DYRK2 depletion. These results reveal an unexpected role of curcumin in DYRK2-proteasome inhibition and provide a proof-of-concept that pharmacological manipulation of proteasome regulators may offer new opportunities for anticancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sistemas CRISPR-Cas , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Curcumina/uso terapéutico , Sinergismo Farmacológico , Femenino , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Ratones , Neoplasias/patología , Oligopéptidos/farmacología , Inhibidores de Proteasoma/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas DyrK
5.
J Biol Chem ; 293(43): 16851-16861, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30217818

RESUMEN

The RE1-silencing transcription factor (REST) is the major scaffold protein for assembly of neuronal gene silencing complexes that suppress gene transcription through regulating the surrounding chromatin structure. REST represses neuronal gene expression in stem cells and non-neuronal cells, but it is minimally expressed in neuronal cells to ensure proper neuronal development. Dysregulation of REST function has been implicated in several cancers and neurological diseases. Modulating REST gene silencing is challenging because cellular and developmental differences can affect its activity. We therefore considered the possibility of modulating REST activity through its regulatory proteins. The human small C-terminal domain phosphatase 1 (SCP1) regulates the phosphorylation state of REST at sites that function as REST degradation checkpoints. Using kinetic analysis and direct visualization with X-ray crystallography, we show that SCP1 dephosphorylates two degron phosphosites of REST with a clear preference for phosphoserine 861 (pSer-861). Furthermore, we show that SCP1 stabilizes REST protein levels, which sustains REST's gene silencing function in HEK293 cells. In summary, our findings strongly suggest that REST is a bona fide substrate for SCP1 in vivo and that SCP1 phosphatase activity protects REST against degradation. These observations indicate that targeting REST via its regulatory protein SCP1 can modulate its activity and alter signaling in this essential developmental pathway.


Asunto(s)
Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Cristalografía por Rayos X , Silenciador del Gen , Células HEK293 , Humanos , Cinética , Neuronas/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación , Estabilidad Proteica , Proteolisis , Proteínas Represoras/genética
6.
Biochim Biophys Acta ; 1864(4): 372-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26779935

RESUMEN

The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.


Asunto(s)
Fosfoproteínas Fosfatasas/fisiología , ARN Polimerasa II/metabolismo , Células Eucariotas/enzimología , Fosforilación , Saccharomyces cerevisiae/enzimología , Transcripción Genética
7.
Molecules ; 19(2): 1481-511, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24473209

RESUMEN

Post-translational modifications of the heptad repeat sequences in the C-terminal domain (CTD) of RNA polymerase II (Pol II) are well recognized for their roles in coordinating transcription with other nuclear processes that impinge upon transcription by the Pol II machinery; and this is primarily achieved through CTD interactions with the various nuclear factors. The identification of novel modifications on new regulatory sites of the CTD suggests that, instead of an independent action for all modifications on CTD, a combinatorial effect is in operation. In this review we focus on two well-characterized modifications of the CTD, namely serine phosphorylation and prolyl isomerization, and discuss the complex interplay between the enzymes modifying their respective regulatory sites. We summarize the current understanding of how the prolyl isomerization state of the CTD dictates the specificity of writers (CTD kinases), erasers (CTD phosphatases) and readers (CTD binding proteins) and how that correlates to transcription status. Subtle changes in prolyl isomerization states cannot be detected at the primary sequence level, we describe the methods that have been utilized to investigate this mode of regulation. Finally, a general model of how prolyl isomerization regulates the phosphorylation state of CTD, and therefore transcription-coupled processes, is proposed.


Asunto(s)
Procesamiento Proteico-Postraduccional/genética , ARN Polimerasa II/genética , Secuencias Repetitivas de Aminoácido/genética , Transcripción Genética , Fosforilación , Fosfotransferasas/química , Fosfotransferasas/genética , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Serina/química , Serina/genética
8.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260389

RESUMEN

The C-terminal domain of RPB1 (CTD) orchestrates transcription by recruiting regulators to RNA Pol II upon phosphorylation. Recent insights highlight the pivotal role of CTD in driving condensate formation on gene loci. Yet, the molecular mechanism behind how CTD-mediated recruitment of transcriptional regulators influences condensates formation remains unclear. Our study unveils that phosphorylation reversibly dissolves phase separation induced by the unphosphorylated CTD. Phosphorylated CTD, upon specific association with transcription regulatory proteins, forms distinct condensates from unphosphorylated CTD. Function studies demonstrate CTD variants with diverse condensation properties in vitro exhibit difference in promoter binding and mRNA co-processing in cells. Notably, varying CTD lengths lead to alternative splicing outcomes impacting cellular growth, linking the evolution of CTD variation/length with the complexity of splicing from yeast to human. These findings provide compelling evidence for a model wherein post-translational modification enables the transition of functionally specialized condensates, highlighting a co-evolution link between CTD condensation and splicing.

9.
Neurobiol Learn Mem ; 100: 25-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23238556

RESUMEN

Cdh1 is a regulatory subunit of the Anaphase Promoting Complex/Cyclosome (APC/C), a ubiquitin E3 ligase known to be involved in regulating cell cycle progression. Recent studies have demonstrated a role for Cdh1 in neurons during developmental and adult synaptic plasticity, as well as memory. In order to better characterize the contribution of Cdh1 in synaptic plasticity and memory, we generated conditional knockout mice using a neuron-specific enolase (Nse) promoter where Cdh1 was eliminated in neurons from the onset of differentiation. Although we detected impaired long-term potentiation (LTP) in hippocampal slices from the Nse-Cdh1 knockout (KO) mice, performance on several hippocampus-dependent memory tasks remained intact. However, the Nse-Cdh1 KO mice exhibited impaired behavioral flexibility and extinction of previously consolidated memories. These findings suggest a role for Cdh1 in regulating the updating of consolidated memories.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Ciclo Celular/metabolismo , Extinción Psicológica/fisiología , Potenciación a Largo Plazo/fisiología , Neuronas/metabolismo , Animales , Proteínas Cdh1 , Proteínas de Ciclo Celular/genética , Condicionamiento Clásico/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Miedo/fisiología , Regulación del Desarrollo de la Expresión Génica , Aprendizaje por Laberinto/fisiología , Ratones
10.
Curr Opin Chem Biol ; 74: 102279, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966700

RESUMEN

Eukaryotes depend upon the proper localization, accumulation, and release of intracellular Ca2+. This is regulated through specialized cellular compartments, signaling pathways, and Ca2+-binding proteins and channels. Cytosolic and extracellular signaling governing intracellular Ca2+ stores are well explored. However, regulatory signals within Ca2+ storage organelles like the endoplasmic/sarcoplasmic reticulum are not well understood. This is due to a lack of identified signaling molecules - like protein kinases - within these compartments, limited information on their regulation, and incomplete understanding of mechanisms involving modified substrates. Here we review recent advances in intralumenal signaling focusing on the secretory pathway protein kinase FAM20C and its regulation, Ca2+-binding protein substrates, and potential mechanisms through which FAM20C may regulate Ca2+ storage.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Vías Secretoras , Retículo Endoplásmico/metabolismo , Fosfotransferasas/metabolismo
11.
Cell Metab ; 35(6): 1009-1021.e9, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084733

RESUMEN

Insulin inhibits gluconeogenesis and stimulates glucose conversion to glycogen and lipids. How these activities are coordinated to prevent hypoglycemia and hepatosteatosis is unclear. Fructose-1,6-bisphosphatase (FBP1) is rate controlling for gluconeogenesis. However, inborn human FBP1 deficiency does not cause hypoglycemia unless accompanied by fasting or starvation, which also trigger paradoxical hepatomegaly, hepatosteatosis, and hyperlipidemia. Hepatocyte FBP1-ablated mice exhibit identical fasting-conditional pathologies along with AKT hyperactivation, whose inhibition reversed hepatomegaly, hepatosteatosis, and hyperlipidemia but not hypoglycemia. Surprisingly, fasting-mediated AKT hyperactivation is insulin dependent. Independently of its catalytic activity, FBP1 prevents insulin hyperresponsiveness by forming a stable complex with AKT, PP2A-C, and aldolase B (ALDOB), which specifically accelerates AKT dephosphorylation. Enhanced by fasting and weakened by elevated insulin, FBP1:PP2A-C:ALDOB:AKT complex formation, which is disrupted by human FBP1 deficiency mutations or a C-terminal FBP1 truncation, prevents insulin-triggered liver pathologies and maintains lipid and glucose homeostasis. Conversely, an FBP1-derived complex disrupting peptide reverses diet-induced insulin resistance.


Asunto(s)
Fructosa , Hipoglucemia , Humanos , Ratones , Animales , Fructosa-Bifosfatasa/genética , Proteínas Proto-Oncogénicas c-akt , Insulina , Hepatomegalia/complicaciones , Hipoglucemia/etiología , Glucosa
12.
J Bone Miner Res ; 36(8): 1548-1565, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33905568

RESUMEN

Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Enfermedades Óseas/genética , Células Germinativas , Mutagénesis , Animales , Etilnitrosourea , Humanos , Ratones , Mutación , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
13.
Bio Protoc ; 10(12): e3648, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659319

RESUMEN

Eukaryotic RNA polymerase II transcribes all protein-coding mRNAs and is highly regulated. A key mechanism directing RNA polymerase II and facilitating the co-transcriptional processing of mRNAs is the phosphorylation of its highly repetitive carboxyl-terminal domain (CTD) of its largest subunit, RPB1, at specific residues. A variety of techniques exist to identify and quantify the degree of CTD phosphorylation, including phosphorylation-specific antibodies and mass spectrometry. Electrophoretic mobility shift assays (EMSAs) have been utilized since the discovery of CTD phosphorylation and continue to represent a simple, direct, and widely applicable approach for qualitatively monitoring CTD phosphorylation. We present a standardized method for EMSA analysis of recombinant GST-CTD substrates phosphorylated by a variety of CTD kinases. Strategies to analyze samples under both denatured/reduced and semi-native conditions are provided. This method represents a simple, direct, and reproducible means to monitor CTD phosphorylation in recombinant substrates utilizing equipment common to molecular biology labs and readily applicable to downstream analyses including immunoblotting and mass spectrometry.

14.
ACS Chem Biol ; 15(8): 2259-2272, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32568517

RESUMEN

The phosphorylation states of RNA polymerase II coordinate the process of eukaryotic transcription by recruitment of transcription regulators. The individual residues of the repetitive heptad of the C-terminal domain (CTD) of the biggest subunit of RNA polymerase II are phosphorylated temporally at different stages of transcription. Intriguingly, despite similar flanking residues, phosphorylation of Ser2 and Ser5 in CTD heptads play dramatically different roles. The mechanism of how the kinases place phosphorylation on the correct serine is not well understood. In this paper, we use biochemical assays, mass spectrometry, molecular modeling, and structural analysis to understand the structural elements determining which serine of the CTD heptad is subject to phosphorylation. We identified three motifs in the activation/P+1 loops differentiating the intrinsic specificity of CTD in various CTD kinases. We characterized the enzyme specificity of the CTD kinases-CDK7 as Ser5-specific, Erk2 with dual specificity for Ser2 and Ser5, and Dyrk1a as a Ser2-specific kinase. We also show that the specificities of kinases are malleable and can be modified by incorporating mutations in their activation/P+1 loops that alter the interactions of the three motifs. Our results provide an important clue to the understanding of post-translational modification of RNA polymerase II temporally during active transcription.


Asunto(s)
Proteínas Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Quinasas Ciclina-Dependientes/metabolismo , Receptor con Dominio Discoidina 1 , Humanos , Espectrometría de Masas/métodos , Fosforilación , Proteínas Quinasas/química , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Quinasa Activadora de Quinasas Ciclina-Dependientes
15.
Neuropharmacology ; 146: 289-299, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30419244

RESUMEN

Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression.


Asunto(s)
Alcoholismo/genética , Trastorno Depresivo Mayor/genética , Exones/efectos de los fármacos , Exones/genética , Expresión Génica/efectos de los fármacos , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Antidepresivos/farmacología , Comorbilidad , Etanol/farmacología , Hipocampo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Fenoles/farmacología , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de Neurotransmisores , Transcriptoma
16.
Elife ; 82019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31385803

RESUMEN

The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of the C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD's coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Serina/metabolismo , Tirosina/metabolismo , Humanos , Fosforilación , Transcripción Genética
17.
Elife ; 72018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520731

RESUMEN

Ca2+ signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca2+ signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen. Here, we show that Fam20C phosphorylates several SR proteins involved in Ca2+ signaling, including calsequestrin2 and Stim1, whose biochemical activities are dramatically regulated by Fam20C mediated phosphorylation. Notably, phosphorylation of Stim1 by Fam20C enhances Stim1 activation and store-operated Ca2+ entry. Physiologically, mice with Fam20c ablated in cardiomyocytes develop heart failure following either aging or induced pressure overload. We extended these observations to show that non-muscle cells lacking Fam20C display altered ER Ca2+ signaling. Overall, we show that Fam20C plays an overarching role in ER/SR Ca2+ homeostasis and cardiac pathophysiology.


Asunto(s)
Proteínas de Unión al Calcio/genética , Calsecuestrina/genética , Proteínas de la Matriz Extracelular/genética , Insuficiencia Cardíaca/genética , Molécula de Interacción Estromal 1/genética , Animales , Calcio/química , Calcio/metabolismo , Señalización del Calcio/genética , Proteínas de Unión al Calcio/química , Calsecuestrina/química , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Proteínas de la Matriz Extracelular/química , Insuficiencia Cardíaca/patología , Homeostasis , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Fosfotransferasas/genética , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/genética , Vías Secretoras/genética , Molécula de Interacción Estromal 1/química
18.
Nat Commun ; 8: 15231, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497792

RESUMEN

RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , ARN Polimerasa II/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Fosforilación , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , Transcripción Genética
19.
ACS Chem Biol ; 12(1): 153-162, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28103682

RESUMEN

Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.


Asunto(s)
Drosophila melanogaster/enzimología , Espectrometría de Masas/métodos , ARN Polimerasa II/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
20.
ACS Chem Biol ; 10(10): 2405-14, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26332362

RESUMEN

Proline isomerization greatly impacts biological signaling but is subtle and difficult to detect in proteins. We characterize this poorly understood regulatory mechanism for RNA polymerase II carboxyl terminal domain (CTD) phosphorylation state using novel, direct, and quantitative chemical tools. We determine the proline isomeric preference of three CTD phosphatases: Ssu72 as cis-proline specific, Scp1 and Fcp1 as strongly trans-preferred. Due to this inherent characteristic, these phosphatases respond differently to enzymes that catalyze the isomerization of proline, like Ess1/Pin1. We demonstrate that this selective regulation of RNA polymerase II phosphorylation state exists within human cells, consistent with in vitro assays. These results support a model in which, instead of a global enhancement of downstream enzymatic activities, proline isomerases selectively boost the activity of a subset of CTD regulatory factors specific for cis-proline. This leads to diversified phosphorylation states of CTD in vitro and in cells. We provide the chemical tools to investigate proline isomerization and its ability to selectively enhance signaling in transcription and other biological contexts.


Asunto(s)
Modelos Biológicos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Prolina/química , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Animales , Western Blotting , Cristalografía por Rayos X , Drosophila/enzimología , Activación Enzimática/fisiología , Humanos , Isomerismo , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA