RESUMEN
The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn3). Following this, NaSn2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn3, but has no tin atoms between the layers. NaSn2 is broken down into an amorphous phase of approximate composition Na1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn-Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na5-xSn2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na15Sn4, can store additional sodium atoms as an off-stoichiometry compound (Na15+xSn4) in a manner similar to Li15Si4.
RESUMEN
Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and different combinations of subunits confer different properties to KARs. Here we report the characterization of a new GluK1 subunit-selective radiolabeled antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione ([(3)H]UBP310) using human recombinant KARs. [(3)H]UBP310 binds to GluK1 with low nanomolar affinity (K(D) = 21 ± 7 nM) but shows no specific binding to GluK2. However, [(3)H]UBP310 also binds to GluK3 (K(D) = 0.65 ± 0.19 µM) but with ~30-fold lower affinity than that observed for GluK1. Competition [(3)H]UBP310 binding experiments on GluK1 revealed the same rank order of affinity of known GluK1-selective ligands as reported previously in functional assays. Nonconserved residues in GluK1-3 adjudged in modeling studies to be important in determining the GluK1 selectivity of UBP310 were point-mutated to switch residues between subunits. None of the mutations altered the expression or trafficking of KAR subunits. Whereas GluK1-T503A mutation diminished [(3)H]UBP310 binding, GluK2-A487T mutation rescued it. Likewise, whereas GluK1-N705S/S706N mutation decreased, GluK3-N691S mutation increased [(3)H]UBP310 binding activity. These data show that Ala487 in GluK2 and Asn691 in GluK3 are important determinants in reducing the affinity of UBP310 for these subunits. Insights from these modeling and point mutation studies will aid the development of new subunit-selective KAR antagonists.
Asunto(s)
Alanina/análogos & derivados , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/metabolismo , Timina/análogos & derivados , Alanina/química , Alanina/metabolismo , Animales , Animales Recién Nacidos , Sitios de Unión/fisiología , Unión Competitiva/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Mutación Puntual/genética , Subunidades de Proteína/genética , Protones , Ratas , Ratas Wistar , Receptores de Ácido Kaínico/genética , Timina/química , Timina/metabolismoRESUMEN
The N-methyl-D-aspartate (NMDA) receptor family regulates various central nervous system functions, such as synaptic plasticity. However, hypo- or hyperactivation of NMDA receptors is critically involved in many neurological and psychiatric conditions, such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Consequently, subtype-selective positive and negative modulators of NMDA receptor function have many potential therapeutic applications not addressed by currently available compounds. We have identified allosteric modulators with several novel patterns of NMDA receptor subtype selectivity that have a novel mechanism of action. In a series of carboxylated naphthalene and phenanthrene derivatives, compounds were identified that selectively potentiate responses at GluN1/GluN2A [e.g., 9-iodophenanthrene-3-carboxylic acid (UBP512)]; GluN1/GluN2A and GluN1/GluN2B [9-cyclopropylphenanthrene-3-carboxylic acid (UBP710)]; GluN1/GluN2D [3,5-dihydroxynaphthalene-2-carboxylic acid (UBP551)]; or GluN1/GluN2C and GluN1/GluN2D receptors [6-, 7-, 8-, and 9-nitro isomers of naphth[1,2-c][1,2,5]oxadiazole-5-sulfonic acid (NSC339614)] and have no effect or inhibit responses at the other NMDA receptors. Selective inhibition was also observed; UBP512 inhibits only GluN1/GluN2C and GluN1/GluN2D receptors, whereas 6-bromo-2-oxo-2H-chromene-3-carboxylic acid (UBP608) inhibits GluN1/GluN2A receptors with a 23-fold selectivity compared with GluN1/GluN2D receptors. The actions of these compounds were not competitive with the agonists L-glutamate or glycine and were not voltage-dependent. Whereas the N-terminal regulatory domain was not necessary for activity of either potentiators or inhibitors, segment 2 of the agonist ligand-binding domain was important for potentiating activity, whereas subtype-specific inhibitory activity was dependent upon segment 1. In terms of chemical structure, activity profile, and mechanism of action, these modulators represent a new class of pharmacological agents for the study of NMDA receptor subtype function and provide novel lead compounds for a variety of neurological disorders.
Asunto(s)
Moduladores del Transporte de Membrana/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión/fisiología , Unión Competitiva , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/farmacología , Glicina/farmacología , Humanos , Moduladores del Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/genética , ARN Complementario/administración & dosificación , ARN Complementario/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Eliminación de Secuencia/fisiología , Xenopus laevisRESUMEN
We have shown that physiological levels of Ca(2+)-calmodulin (Ca(2+)CaM; 50-100 nM) activate cardiac ryanodine receptors (RyR2) incorporated into bilayers and increase the frequency of Ca(2+) sparks and waves in cardiac cells. In contrast, it is well known that Ca(2+)CaM inhibits [(3)H]ryanodine binding to cardiac sarcoplasmic reticulum. Since the [(3)H]ryanodine binding technique does not reflect the effects of Ca(2+)CaM on RyR2 open probability (Po), we have investigated, using the reversible ryanoid, ryanodol, whether Ca(2+)CaM can directly influence the binding of ryanoids to single RyR2 channels independently of Po. We demonstrate that Ca(2+)CaM reduces the rate of ryanodol association to RyR2 without affecting the rate of dissociation. We also find that ryanodol-bound channels fluctuate between at least two distinct subconductance states, M(1) and M(2), in a voltage-dependent manner. Ca(2+)CaM significantly alters the equilibrium between these two states. The results suggest that Ca(2+)CaM binding to RyR2 causes a conformation change to regions of the channel that include the ryanoid binding site, thereby leading to a decrease in ryanoid association rate and modulation of gating within the ryanoid/RyR2 bound state. Our data provide a possible explanation for why the effects of Ca(2+)CaM at the single-channel level are not mirrored by [(3)H]ryanodine binding studies.
Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Activación del Canal Iónico , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/metabolismo , Animales , Cinética , Miocardio/citología , Probabilidad , Unión Proteica , Rianodina/química , Tritio/químicaRESUMEN
The 'transport-of-intensity' equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni80Fe20 (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 µm and 800 µm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5Tnm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations.
RESUMEN
9-Substituted phenanthrene-3-carboxylic acids have been reported to have allosteric modulatory activity at the NMDA receptor. This receptor is activated by the excitatory neurotransmitter L-glutamate and has been implicated in a range of neurological disorders such as schizophrenia, epilepsy and chronic pain and neurodegenerative disorders such as Alzheimer's disease. Herein, the convenient synthesis of a wide range of novel 3,9-disubstituted phenanthrene derivatives starting from a few common intermediates is described. These new phenanthrene derivatives will help to clarify the structural requirements for allosteric modulation of the NMDA receptor.
RESUMEN
The difluoromethylene analogue of aspartyl phosphate 6 has been prepared by the fluoride catalysed coupling of diethyl trimethylsilyldifluoromethyl phosphonate with an appropriate aldehyde followed by Dess-Martin oxidation and deprotection; the deprotected compound inhibited (KI 95 microM) aspartate semi-aldehyde dehydrogenase, a key enzyme involved in bacterial amino acid and peptidoglycan biosynthesis.
Asunto(s)
Aspartato-Semialdehído Deshidrogenasa/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/síntesis química , Ácido Aspártico/farmacología , Aspartato-Semialdehído Deshidrogenasa/metabolismo , Ácido Aspártico/química , Cinética , Estructura MolecularRESUMEN
A new, mild and high yielding synthesis of phosphoramidates is described: potassium salts of carboxylic acids are treated with ethylchloroformate and the resulting activated anhydride-carbonates are then treated with LiNH-P(O)(OEt)2 in situ--the methodology is especially suited to acid sensitive systems featuring BOC, tBu or acetal protecting groups.
Asunto(s)
Amidas/síntesis química , Aspartato-Semialdehído Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Ácidos Fosfóricos/síntesis química , Amidas/farmacología , Aspartato-Semialdehído Deshidrogenasa/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Ácidos Fosfóricos/farmacologíaRESUMEN
Over-activation of N-methyl-d-aspartate (NMDA) receptors is critically involved in many neurological conditions, thus there has been considerable interest in developing NMDA receptor antagonists. We have recently identified a series of naphthoic and phenanthroic acid compounds that allosterically modulate NMDA receptors through a novel mechanism of action. In the present study, we have determined the structure-activity relationships of 18 naphthoic acid derivatives for the ability to inhibit the four GluN1/GluN2(A-D) NMDA receptor subtypes. 2-Naphthoic acid has low activity at GluN2A-containing receptors and yet lower activity at other NMDA receptors. 3-Amino addition, and especially 3-hydroxy addition, to 2-naphthoic acid increased inhibitory activity at GluN1/GluN2C and GluN1/GluN2D receptors. Further halogen and phenyl substitutions to 2-hydroxy-3-naphthoic acid leads to several relatively potent inhibitors, the most potent of which is UBP618 (1-bromo-2-hydroxy-6-phenylnaphthalene-3-carboxylic acid) with an IC(50) â¼ 2 µM at each of the NMDA receptor subtypes. While UBP618 is non-selective, elimination of the hydroxyl group in UBP618, as in UBP628 and UBP608, leads to an increase in GluN1/GluN2A selectivity. Of the compounds evaluated, specifically those with a 6-phenyl substitution were less able to fully inhibit GluN1/GluN2A, GluN1/GluN2B and GluN1/GluN2C responses (maximal % inhibition of 60-90%). Such antagonists may potentially have reduced adverse effects by not excessively blocking NMDA receptor signaling. Together, these studies reveal discrete structure-activity relationships for the allosteric antagonism of NMDA receptors that may facilitate the development of NMDA receptor modulator agents for a variety of neuropsychiatric and neurological conditions.
Asunto(s)
Naftalenos/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Regulación Alostérica , Animales , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , XenopusRESUMEN
Competitive N-methyl-d-aspartate receptor (NMDAR) antagonists bind to the GluN2 subunit, of which there are four types (GluN2A-D). We report that some N(1)-substituted derivatives of cis-piperazine-2,3-dicarboxylic acid display improved relative affinity for GluN2C and GluN2D versus GluN2A and GluN2B. These derivatives also display subtype selectivity among the more distantly related kainate receptor family. Compounds 18i and (-)-4 were the most potent kainate receptor antagonists, and 18i was selective for GluK1 versus GluK2, GluK3 and AMPA receptors. Modeling studies revealed structural features required for activity at GluK1 subunits and suggested that S674 was vital for antagonist activity. Consistent with this hypothesis, replacing the equivalent residue in GluK3 (alanine) with a serine imparts 18i antagonist activity. Antagonists with dual GluN2D and GluK1 antagonist activity may have beneficial effects in various neurological disorders. Consistent with this idea, antagonist 18i (30 mg/kg ip) showed antinociceptive effects in an animal model of mild nerve injury.
Asunto(s)
Fenantrenos/síntesis química , Piperazinas/síntesis química , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Animales , Sitios de Unión , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Técnicas In Vitro , Masculino , Modelos Moleculares , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Traumatismos de los Nervios Periféricos/fisiopatología , Fenantrenos/química , Fenantrenos/farmacología , Piperazinas/química , Piperazinas/farmacología , Mutación Puntual , Subunidades de Proteína/antagonistas & inhibidores , Ratas , Ratas Wistar , Receptores de Ácido Kaínico/genética , Receptores de N-Metil-D-Aspartato/fisiología , Proteínas Recombinantes/antagonistas & inhibidores , Estereoisomerismo , Relación Estructura-Actividad , XenopusRESUMEN
The surface expression and localization of AMPA receptors (AMPARs) at dendritic spines are tightly controlled to regulate synaptic transmission. Here we show that de novo exocytosis of the GluR2 AMPAR subunit occurs at the dendritic shaft and that new AMPARs diffuse into spines by lateral diffusion in the membrane. However, membrane topology restricts this lateral diffusion. We therefore investigated which mechanisms recruit AMPARs to spines from the shaft and demonstrated that inhibition of dynamin GTPase activity reduced lateral diffusion of membrane-anchored green fluorescent protein and super-ecliptic pHluorin (SEP)-GluR2 into spines. In addition, the activation of synaptic N-methyl-d-aspartate (NMDA) receptors enhanced lateral diffusion of SEP-GluR2 and increased the number of endogenous AMPARs in spines. The NMDA-invoked effects were prevented by dynamin inhibition, suggesting that activity-dependent dynamin-mediated endocytosis within spines generates a net inward membrane drift that overrides lateral diffusion barriers to enhance membrane protein delivery into spines. These results provide a novel mechanistic explanation of how AMPARs and other membrane proteins are recruited to spines by synaptic activity.
Asunto(s)
Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Dinaminas/metabolismo , Exocitosis/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Membrana Celular/genética , Espinas Dendríticas/genética , Dinaminas/genética , Ratas , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genéticaRESUMEN
BACKGROUND: Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), the P2Y(1) and P2Y(12) purinergic receptors. Recently, we demonstrated that both receptors desensitize and internalize in human platelets by differential kinase-dependent mechanisms. OBJECTIVES: To demonstrate whether responses to P2Y(1) and P2Y(12) purinergic receptors resensitize in human platelets and determine the role of receptor traffic in this process. METHODS: These studies were undertaken either in human platelets or in cells stably expressing epitope-tagged P2Y(1) and P2Y(12) purinergic receptor constructs. RESULTS: In this study we show for the first time that responses to both of these receptors can rapidly resensitize following agonist-dependent desensitization in human platelets. Further, we show that in human platelets or in 1321N1 cells stably expressing receptor constructs, the disruption of receptor internalization, dephosphorylation or subsequent receptor recycling is sufficient to block resensitization of purinergic receptor responses. We also show that, in platelets, internalization of both these receptors is dependent upon dynamin, and that this process is required for resensitization of responses. CONCLUSIONS: This study is therefore the first to show that both P2Y(1) and P2Y(12) receptor activities are rapidly and reversibly modulated in human platelets, and it reveals that the underlying mechanism requires receptor trafficking as an essential part of this process.
Asunto(s)
Plaquetas/metabolismo , Receptores Purinérgicos P2/sangre , Receptores Purinérgicos/sangre , Adenosina Difosfato/sangre , Adenosina Difosfato/farmacología , Plaquetas/efectos de los fármacos , Calcio/sangre , Línea Celular , AMP Cíclico/sangre , Humanos , Técnicas In Vitro , Monensina/farmacología , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/fisiología , Agonistas Purinérgicos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , TransfecciónRESUMEN
The synthesis of methylene phosphonate, difluoromethylene phosphonate and phosphoramidate analogues of aspartyl phosphate, together with reduced analogues, is described. These compounds were shown to be effective inhibitors of aspartate-semialdehyde dehydrogenase (ASA-DH) from Escherichia coli. However, despite the structural similarity of the compounds, different patterns of inhibition were observed, indicative of two phases of recognition and binding. Correlation between measured inhibition constants with pK(a) values supports the theory that binding at the phosphate binding site is optimised for singly ionised phosphate analogues.