Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 640, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937661

RESUMEN

BACKGROUND: Drought adaptation is critical to many tree species persisting under climate change, however our knowledge of the genetic basis for trees to adapt to drought is limited. This knowledge gap impedes our fundamental understanding of drought response and application to forest production and conservation. To improve our understanding of the genomic determinants, architecture, and trait constraints, we assembled a reference genome and detected ~ 6.5 M variants in 432 phenotyped individuals for the foundational tree Corymbia calophylla. RESULTS: We found 273 genomic variants determining traits with moderate heritability (h2SNP = 0.26-0.64). Significant variants were predominantly in gene regulatory elements distributed among several haplotype blocks across all chromosomes. Furthermore, traits were constrained by frequent epistatic and pleiotropic interactions. CONCLUSIONS: Our results on the genetic basis for drought traits in Corymbia calophylla have several implications for the ability to adapt to climate change: (1) drought related traits are controlled by complex genomic architectures with large haplotypes, epistatic, and pleiotropic interactions; (2) the most significant variants determining drought related traits occurred in regulatory regions; and (3) models incorporating epistatic interactions increase trait predictions. Our findings indicate that despite moderate heritability drought traits are likely constrained by complex genomic architecture potentially limiting trees response to climate change.


Asunto(s)
Sequías , Epistasis Genética , Genómica , Genoma de Planta , Haplotipos , Sitios de Carácter Cuantitativo , Fenotipo , Polimorfismo de Nucleótido Simple
2.
Mol Ecol ; 31(6): 1735-1752, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038378

RESUMEN

Temperature and precipitation regimes are rapidly changing, resulting in forest dieback and extinction events, particularly in Mediterranean-type climates (MTC). Forest management that enhance forests' resilience is urgently required, however adaptation to climates in heterogeneous landscapes with multiple selection pressures is complex. For widespread trees in MTC we hypothesized that: patterns of local adaptation are associated with climate; precipitation is a stronger factor of adaptation than temperature; functionally related genes show similar signatures of adaptation; and adaptive variants are independently sorting across the landscape. We sampled 28 populations across the geographic distribution of Eucalyptus marginata (jarrah), in South-west Western Australia, and obtained 13,534 independent single nucleotide polymorphic (SNP) markers across the genome. Three genotype-association analyses that employ different ways of correcting population structure were used to identify putatively adapted SNPs associated with independent climate variables. While overall levels of population differentiation were low (FST  = 0.04), environmental association analyses found a total of 2336 unique SNPs associated with temperature and precipitation variables, with 1440 SNPs annotated to genic regions. Considerable allelic turnover was identified for SNPs associated with temperature seasonality and mean precipitation of the warmest quarter, suggesting that both temperature and precipitation are important factors in adaptation. SNPs with similar gene functions had analogous allelic turnover along climate gradients, while SNPs among temperature and precipitation variables had uncorrelated patterns of adaptation. These contrasting patterns provide evidence that there may be standing genomic variation adapted to current climate gradients, providing the basis for adaptive management strategies to bolster forest resilience in the future.


Asunto(s)
Genética de Población , Árboles , Adaptación Fisiológica/genética , Genómica , Polimorfismo de Nucleótido Simple/genética , Selección Genética , Árboles/genética
3.
Sci Rep ; 10(1): 15303, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943731

RESUMEN

Reproductive synchronicity within a seed orchard facilitates gene exchange and reduces self-fertilisation. Here we assessed key flowering traits, biomass and foliar 1,8-cineole concentrations of Eucalyptus loxophleba (subsp. lissophloia and gratiae) in an open-pollinated seed orchard. Monthly flowering observations were made on 1142 trees from 60 families and nine provenances across 2 years. The percentage of trees flowering in both years was similar at 87%. There were differences between provenances and families within provenances for flowering traits, biomass and 1,8-cineole and interactions between provenances and year for flowering traits. Heritability of start and end flowering, and 1,8-cineole were high to moderate ([Formula: see text] = 0.75-0.45) and duration of flowering, propensity to flower and biomass estimates were moderate to low ([Formula: see text] = 0.31-0.10). Genetic and phenotypic correlations between flowering traits were high (rg = 0.96-0.63 and rp = 0.93-0.34) except between duration and end of flowering. The correlations were weaker between flowering traits and biomass or 1,8-cineole. 'Dual flowering', when trees underwent two reproductive cycles in a year, was responsible for out-of-phase flowering and those with low biomass and 1,8-cineole concentration should be removed from the breeding programme to hasten selection for desirable traits.


Asunto(s)
Eucaliptol/metabolismo , Eucalyptus/genética , Eucalyptus/fisiología , Flores/genética , Flores/fisiología , Biomasa , Cruzamiento/métodos , Eucalyptus/metabolismo , Flores/metabolismo , Fenotipo , Polinización/genética , Polinización/fisiología , Reproducción/genética , Reproducción/fisiología , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Autofecundación/genética , Autofecundación/fisiología
4.
Ecol Evol ; 10(1): 232-248, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31988725

RESUMEN

Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.Significant differences were found between populations for all traits. Narrow-sense heritability was significant for five traits (0.15-0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD).Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.

5.
Evol Appl ; 12(6): 1178-1190, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31293630

RESUMEN

Natural ecosystems are under pressure from increasing abiotic and biotic stressors, including climate change and novel pathogens, which are putting species at risk of local extinction, and altering community structure, composition and function. Here, we aim to assess adaptive variation in growth and fungal disease resistance within a foundation tree, Corymbia calophylla to determine local adaptation, trait heritability and genetic constraints in adapting to future environments. Two experimental planting sites were established in regions of contrasting rainfall with seed families from 18 populations capturing a wide range of climate origins (~4,000 individuals at each site). Every individual was measured in 2015 and 2016 for growth (height, basal diameter) and disease resistance to a recently introduced leaf blight pathogen (Quambalaria pitereka). Narrow-sense heritability was estimated along with trait covariation. Trait variation was regressed against climate-of-origin, and multivariate models were used to develop predictive maps of growth and disease resistance. Growth and blight resistance traits differed significantly among populations, and these differences were consistent between experimental sites and sampling years. Growth and blight resistance were heritable, and comparisons between trait differentiation (Q ST) and genetic differentiation (F ST) revealed that population differences in height and blight resistance traits are due to divergent natural selection. Traits were significantly correlated with climate-of-origin, with cool and wet populations showing the highest levels of growth and blight resistance. These results provide evidence that plants have adaptive growth strategies and pathogen defence strategies. Indeed, the presence of standing genetic variation and trait heritability of growth and blight resistance provide capacity to respond to novel, external pressures. The integration of genetic variation into adaptive management strategies, such as assisted gene migration and seed sourcing, may be used to provide greater resilience for natural ecosystems to both biotic and abiotic stressors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA