Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vector Borne Dis ; 61(1): 107-116, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648412

RESUMEN

BACKGROUND OBJECTIVES: Mosquitoes alone transmit diseases to around 700 million individuals annually, killing approximately 0.7 million people every year worldwide. Considering the potential health risks linked with synthetic repellents, it has become vital to identify eco-friendly, natural repellents for mosquito control as well as to understand the underlying mechanism for mosquito repellent activity. To address this, objectives were set to extract essential oils from Citrus macroptera peel and Homalomena aromatica (Spreng.) Schott. rhizomes, evaluate their mosquito repellent activity against Aedes aegypti, and further explore their mosquito odorant receptor inhibition potential. METHODS: The oils were extracted using Clevenger's apparatus, and properties like specific gravity, refractive index, and boiling point were evaluated and characterised using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS). Aedes aegypti mosquito eggs collected from the Indian Council of Medical Research (ICMR), Dibrugarh, were reared in the Department of Pharmaceutical Sciences, Research Laboratory, to obtain adult Aedes aegypti mosquitoes for the mosquito repellent activity evaluation of the essential oils using the Human Bait technique'. Molecular docking studies were performed for the oil components against mosquito odorant binding proteins. Further, toxicity studies of these two oils were evaluated against human dermal fibroblast adult (HDFa) cells. RESULTS: The results revealed the presence of limonene (86.76%) and linalool (52.35%), respectively, in Citrus macroptera and Homalomena aromatica oils. It was found that the combination of the oils in a ratio of 1:1 showed mosquito repellent activity for up to 6.33 ± 0.23 h. Molecular docking studies showed the presence of major oil components having mosquito odorant receptor blocking potential comparable to N, N-diethyl-meta-toluamide (DEET), indicating a rationale for extended mosquito repellent action. Further, both of these oils were found to be non-cytotoxic against HDFa cells after 24 h. INTERPRETATION CONCLUSION: The encouraging mosquito repellent activity of these two oils as compared to synthetic mosquito repellent DEET might pave the way for the development of novel herbal mosquito repellent formulations containing these essential oils.


Asunto(s)
Aedes , Citrus , Repelentes de Insectos , Simulación del Acoplamiento Molecular , Aceites Volátiles , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Repelentes de Insectos/aislamiento & purificación , Animales , Aedes/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Citrus/química , Humanos , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Femenino , Rizoma/química
2.
Drug Dev Ind Pharm ; 47(8): 1326-1334, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34633264

RESUMEN

OBJECTIVE: Development of Frostbite healing hydrogel of Manuka honey and hyaluronic acid. SIGNIFICANCE: Frostbite is a cold-induced ischemic vascular injury non-responsive to most of the wound healing products. Thrombus-induced ischemia is the main cause of frostbite-related necrosis. Hyaluronic acid is known to possess significant antithrombotic and wound healing activity. Moreover, Manuka Honey is also rich in flavonoids and polyphenols with potential antithrombotic activity. These two agents were together utilized to develop a frostbite healing formulation. METHODS: In-silico antithrombotic efficacy of major phytoconstituents of Manuka honey was evaluated using in-silico-docking studies against Tissue plasminogen activator and Cyclooxygenase-1 protein. Further in-vivo frostbite healing evaluation was carried out in Wistar rats, by inducing frostbite with a supercooled rod. RESULTS: The results indicate that major leptosin and other major phytoconstituent of Manuka honey has significant antithrombotic property. The hydrogel formulation of HA and MH possess significant antimicrobial efficacy. The wound contraction studies and histopathological evaluation reveals that the hydrogel also has a good frostbite healing activity showing complete wound healing within an 18-day period. The findings of the western blotting studies suggest that the hydrogel acts by VEGF- NRF-2 pathway. CONCLUSION: This result implies that the prepared hydrogel can serve as an effective frostbite healing formulation.


Asunto(s)
Congelación de Extremidades , Miel , Animales , Fibrinolíticos/farmacología , Congelación de Extremidades/tratamiento farmacológico , Ácido Hialurónico/farmacología , Hidrogeles , Ratas , Ratas Wistar , Activador de Tejido Plasminógeno/farmacología , Cicatrización de Heridas
3.
J Therm Biol ; 93: 102716, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33077129

RESUMEN

Frostbite is a severe ischemic injury which occurs due to the tissue vascular damage after sub-zero temperature tissue exposure. Deep frostbite can result in necrosis and may need amputation of affected tissue. Though a serious injury, it is not very well understood, and further scientific exploration is needed. This work explores the current understanding of the pathophysiology of frostbite. We reviewed the current status of the diagnostics, the drugs, the therapies and the surgical practices for prevention and management of frostbite. Advances in nanotechnology and drug delivery had improved the therapeutic outcomes significantly. This review also explored the latest advancements and researches done for development of newer therapeutics and diagnostics for frostbite care.


Asunto(s)
Congelación de Extremidades/terapia , Amputación Quirúrgica/métodos , Animales , Congelación de Extremidades/diagnóstico , Congelación de Extremidades/etiología , Humanos , Oxigenoterapia Hiperbárica/métodos , Guías de Práctica Clínica como Asunto , Terapia Trombolítica/métodos
4.
J Food Sci Technol ; 57(4): 1205-1215, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32180617

RESUMEN

Grapes are one of the most highly consumed fruits across the world. In ancient Europe the leaves and the sap of grape plants has been used in traditional treatment for ages. Besides being a wellspring for vitamins and fibre, the skin and seeds of grapes are highly rich in Polyphenols specifically proanthocyanidins, which can be used as a functional ingredient to address various health issues by boosting the natural bio-processes of the body. Since, grape seeds are by product of wine making companies therefore can be easily procured. The present review article briefly describes the various pharmacological activities of grape seed extract and different experimental studies were done which supports the beneficial health qualities of the extract. Through different and various studies, it was proved that the proanthocyanidin rich grape seed extract provides benefits against many diseases i.e. inflammation, cardiovascular disease, hypertension, diabetes, cancer, peptic ulcer, microbial infections, etc. Therefore, beside from using it as a nutraceutical or cosmeceutical, as a result they may have a potential to substitute or complement in currently used drugs in the treatment of diseases by developing it into other successful pharmaceutical formulations for better future prospective.

5.
Immunopharmacol Immunotoxicol ; 41(1): 130-139, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30741582

RESUMEN

Objective: Melatonin and pumpkin seed oil, along with US FDA approved UV filters were incorporated into a formulation for enhancement of UV protection by exerting an antioxidant effect. The objective of this study was to assess the protective effect of this formulation against ultraviolet (UV) radiation-induced photo dermatitis in rats, which is an established model to study the aetiopathogenic mechanisms in psoriasis vulgaris, as the former exhibits the same features to those of clinical psoriasis vulgaris in humans. Materials and methods: The animals were segregated into five groups (6/group) and all received their respective formulations dermally prior to chronic UV irradiation for 28 days. The test, placebo, and standard groups; received the test, placebo, and standard formulations respectively; whereas the positive control group received only UV radiation. A normal control group was also maintained. Disease and treatment status were analyzed using various techniques by euthanizing the rats after 28 days. Results: The test formulation was able to ameliorate the UV-induced increase in skin fold, epidermal thickness, and skin edema; inhibit the reduction of hydroxyproline content and incidence of LPO within the skin tissues of exposed animals. The formulation was also able to inhibit the release of proinflammatory cytokines; IFN-γ, IL-1ß, IL-6, and TNF-α; and upregulation of NF-κB and COX-2 genes caused by chronic UV exposure. Conclusion: It can be stated that melatonin included in the newly formulated sunscreen was able to inhibit the induction of photodermatitis via immunoregulation of inflammatory cytokines along with NF-κB and COX-2 genes.


Asunto(s)
Melatonina/farmacología , FN-kappa B/antagonistas & inhibidores , Trastornos por Fotosensibilidad/prevención & control , Piel/efectos de los fármacos , Protectores Solares/farmacología , Rayos Ultravioleta , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Masculino , Melatonina/administración & dosificación , FN-kappa B/genética , Trastornos por Fotosensibilidad/inmunología , Trastornos por Fotosensibilidad/patología , Psoriasis/etiología , Psoriasis/inmunología , Psoriasis/prevención & control , Ratas Wistar , Piel/inmunología , Piel/patología , Protectores Solares/administración & dosificación
6.
Drug Dev Ind Pharm ; 45(8): 1332-1341, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31116617

RESUMEN

The present study is aimed at the development of a sunscreen cream for use in high altitude areas which have been found to possess superior sun protection factor (SPF) along with remarkable antioxidant activity. The topical formulation is a standard oil-in-water emulsion of a combination of United States Food and Drug Administration (US FDA) approved ultraviolet filters; along with melatonin and pumpkin seed oil. The in-silico optimized formulation was characterized using established methods and the stability study was carried out as per International Conference on Harmonization guidelines. The formulation was prepared after requisite pre-formulation analysis by Fourier-transform infrared spectroscopy, differential scanning calorimetric and thermogravimetric analyses; followed by characterization based on color, odor, phase separation, spreadability, specific gravity, homogeneicity, centrifugation and sensitivity. For the stability study, a total of three samples from three batches of the finished product were subjected to the stability study. The samples were analyzed for content uniformity, pH, in vitro SPF, rheology, zeta potential, droplet diameter and microbial analysis of the 0th day and also the the end of the storage period. Results obtained from the stability study indicated that the formulation possesses 50+ in vitro SPF value and remained stable for 6 months and 12 months under storage at 40 ± 2 °C and 75 ± 5% relative humidity; and -20 °C ± 5 °C respectively.


Asunto(s)
Protectores Solares/química , Altitud , Química Farmacéutica/métodos , Piel/efectos de los fármacos , Factor de Protección Solar/métodos , Rayos Ultravioleta/efectos adversos
7.
Cutan Ocul Toxicol ; 37(3): 258-266, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29480078

RESUMEN

In the present investigation, the safety of novel combinational silver sulfadiazine-bFGF-loaded hydrogel was assured by performing acute skin irritation, sensitization, acute dermal toxicity, and eye irritation in compliance with the Organization for Economic Co-operation and Development guidelines. In the skin irritation study, placebo, test, and positive control (0.8% w/v aqueous solution of formaldehyde) were applied on New Zealand rabbits and monitored for abnormal skin responses including erythema and edema. The placebo and test formulation did not induce any adverse reactions and were classified as nonirritating materials. In the skin sensitization test, guinea pigs were sensitized by positive control (0.1% w/v 1-chloro-2,4-dinitrobenzene in 10% of propylene glycol as a standard skin sensitizing agent), placebo, and test formulations. Weak sensitization was observed in the placebo and test formulation treated groups. Additionally, acute dermal toxicity test was performed in Wistar rats, where no signs of toxicity were observed in biochemical, hematological, and histopathological studies. Moreover, the acute eye irritation test was carried out in rabbits and no abnormal clinical signs were evident in the cornea or iris. As a whole, these findings suggest that the hydrogel formulation does not cause any skin irritation, skin sensitizationand dermal toxic effects, and eye irritation following dermal and ocular applications, respectively. Therefore, all the findings obtained from this preclinical study indicated that this hydrogel formulation is nontoxic and safe for use in animal models.


Asunto(s)
Quemaduras/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos/efectos adversos , Hidrogeles/efectos adversos , Sulfadiazina de Plata/efectos adversos , Piel/efectos de los fármacos , Administración Cutánea , Administración Oftálmica , Animales , Antiinfecciosos Locales , Seguridad de Productos para el Consumidor/normas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ojo/efectos de los fármacos , Femenino , Guías como Asunto , Cobayas , Humanos , Masculino , Conejos , Ratas , Ratas Wistar , Pruebas Cutáneas/normas , Pruebas de Toxicidad Aguda/normas
8.
Regul Toxicol Pharmacol ; 89: 1-12, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28694170

RESUMEN

Ultraviolet (UV) radiation exposure has been known to cause irreparable damages to human skin. The daunting risk of UV radiation exposure faced by military personnel led to the development of a sunscreen formulation which has superior sun protection factor combined with the ability to counteract reactive oxygen species. The present work deals with the preclinical safety evaluation of the sunscreen formulation comprising of four US FDA approved UV filters; namely avobenzone, octinoxate, oxybenzone, titanium dioxide along with melatonin and pumpkin seed oil, via OECD protocols of assessing acute oral and dermal toxicity; skin sensitizing; skin irritating; ocular irritating and genotoxic potential. Both oral and dermal LD50 values were found to be ˃2000 mg/kg body weight in adult Wistar albino rats using acute dermal and oral toxicity tests. The sunscreen formulation was found to be non-sensitizing to the skin of guinea pigs and non-irritating to both skin and eyes of rabbits. The sunscreen formulation was also found to be non-mutagenic which was affirmed by a battery of genotoxicity and muagenicity assays. The results obtained from this preclinical study indicated that the sunscreen formulation is non toxic and safe in animal models. This study along with additional preclinical evaluations may serve as a basis for considering the formulation as a potential candidate for further trials to establish its efficacy, tolerability and applicability.


Asunto(s)
Cucurbita/química , Melatonina/toxicidad , Semillas/química , Quemadura Solar/prevención & control , Protectores Solares/toxicidad , Animales , Benzofenonas/toxicidad , Cinamatos/toxicidad , Evaluación Preclínica de Medicamentos , Cobayas , Propiofenonas/toxicidad , Ratas , Ratas Wistar , Protectores Solares/química , Titanio/toxicidad , Pruebas de Toxicidad
9.
Drug Dev Ind Pharm ; 42(9): 1482-94, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26850463

RESUMEN

CONTEXT: Skin cancer represents the most growing types of cancer in human and ultraviolet radiation can be cited as one of the prime factor for its occurrence. Current therapy of skin cancer suffers from numerous side effects; for effective therapy, topical application of formulation of paclitaxel (PTX) can be considered as a novel approach. OBJECTIVE: The present study is an attempt to prepare formulation of solid lipid nanoparticles (SLN) of PTX for the effective treatment of various form of skin carcinoma. METHODS: The SLN were prepared by high-speed homogenization and ultrasonication method. The prepared SLN were characterized. The optimized PTX SLN were loaded in carbopol gel. The prepared gels were evaluated for its gelling properties and finally studied for in vivo anti-cancer efficacy and histopathological study. RESULTS: The particle size distribution was found to be in the range of 78.82-587.8 nm. The product yield (%) was found between 60% and 66% and showed a highest entrapment efficiency of 68.3%. The in vitro release of the drug from SLN dispersion was found to be biphasic with the initial burst effect, followed by slow release. SLN-loaded gel were subjected to permeability study and the results show steady-state flux (Jss), permeability coefficient (Kp), and enhancement ratio were significantly increased in SLN-loaded gel formulation as compared with PTX-loaded gel. The histopathological study clearly reveals the efficacy of the SLN-F3 3G in the treatment of skin cancer. CONCLUSION: The experimental formulations show controlled release of PTX and thus expected to show reduce dose-related side effects.


Asunto(s)
Antineoplásicos/administración & dosificación , Paclitaxel/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Resinas Acrílicas/química , Administración Cutánea , Animales , Antineoplásicos/química , Química Farmacéutica/métodos , Portadores de Fármacos/química , Estabilidad de Medicamentos , Femenino , Geles/administración & dosificación , Geles/química , Lípidos/química , Masculino , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Paclitaxel/química , Tamaño de la Partícula , Permeabilidad , Absorción Cutánea/fisiología
10.
AAPS PharmSciTech ; 17(3): 743-56, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26335417

RESUMEN

The present investigation was aimed at exploitation of the mucoadhesive potential of carbopol 934P polymer in developing microbeads of glipizide (GLP) for its effectivity in controlling blood sugar in diabetic patients. Various batches of GLP beads were prepared by an emulsion-solvent evaporation technique using the release-retarding polymer carbopol and subjected to a systematic evaluation such as physical characterization, ex vivo mucoadhesion, hydration and erosion test, and in vitro drug release; and instrumental and in vivo studies were performed with the best formulation. The highest yield and loading efficiency were observed as 94 and ∼90%, respectively. The mean particle size of the microbeads ranged from 832 to 742 µm. The oval shape of the microbeads with slight roughness was apparent in the SEM micrograph. The release period was extended till 18 h. In vitro release of the drug from the beads followed the diffusion and erosion mechanism. In the oral glucose tolerance test (OGTT), there is a significant (p < 0.01) reduction in fasting blood glucose levels in Wistar rat and guinea pig in comparison with that using the marketed product. Results indicated that process parameters-drug-polymer ratio, concentration of the surfactant, and stirring speed-controlled the various characteristics of the microparticles. The mucoadhesivity test ensured strong adherence of the beads to the mucosal membrane in pH 1.2 for a prolonged period. Owing to the mucoadhesivity of carbopol 934P, prolonged release of GLP and reduction of fasting sugar in the animal model were observed to a satisfactory level, and thus, management of diabetes in a better manner is expected with this new formulation.


Asunto(s)
Acrilatos/farmacocinética , Adhesivos/farmacocinética , Glipizida/farmacocinética , Hipoglucemiantes/farmacocinética , Microesferas , Acrilatos/síntesis química , Adhesivos/síntesis química , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Química Farmacéutica , Glipizida/síntesis química , Prueba de Tolerancia a la Glucosa/métodos , Cabras , Cobayas , Hipoglucemiantes/síntesis química , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier/métodos
11.
Mol Pharm ; 12(8): 2651-64, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25941882

RESUMEN

Current therapies are insufficient to prevent recurrent fungal infection especially in the lower part of the lung. A careful and systematic understanding of the properties of nanoparticles plays a significant role in the design, development, optimization, and in vivo performances of the nanoparticles. In the present study, PLGA nanoparticles containing the antifungal drug voriconazole was prepared and two best formulations were selected for further characterization and in vivo studies. The nanoparticles and the free drug were radiolabeled with technetium-99m with 90% labeling efficiency, and the radiolabeled particles were administered to investigate the effect on their blood clearance, biodistribution, and in vivo gamma imaging. In vivo deposition of the drug in the lobes of the lung was studied by LC-MS/MS study. The particles were found to be spherical and had an average hydrodynamic diameter of 300 nm with a smooth surface. The radiolabeled particles and the free drug were found to accumulate in various major organs. Drug accumulation was more pronounced in the lung in the case of administration of the nanoparticles than that of the free drug. The free drug was found to be excreted more rapidly than the nanoparticle containing drug following the inhalation route as assessed by gamma scintigraphy study. Thus, the study reveals that pulmonary administration of nanoparticles containing voriconazole could be a better therapeutic choice even as compared to the iv route of administration of the free drug and/or the drug loaded nanoparticles.


Asunto(s)
Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Enfermedades Pulmonares Fúngicas/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Voriconazol/administración & dosificación , Voriconazol/farmacocinética , Administración por Inhalación , Animales , Disponibilidad Biológica , Portadores de Fármacos , Femenino , Semivida , Enfermedades Pulmonares Fúngicas/metabolismo , Masculino , Ratones , Nanopartículas/química , Ácido Poliglicólico/química , Ratas , Ratas Sprague-Dawley
12.
Drug Dev Ind Pharm ; 41(7): 1095-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24980914

RESUMEN

OBJECTIVE: The main objective of this study is to develop a safer non-invasive treatment for nail infections since the current treatment regimen has drawbacks like, incidence of systemic side-effects and higher cost. Proposed topical treatment on the other hand can drastically improve the situation, hence highly desirable. This work was undertaken with a hypothesis to develop a transungual microemulsion gel for topical treatment of onychomycosis. METHODS: Benzyl alcohol and isopropyl myristate were used as oil, Pluronic F68 as surfactant and ethanol as co surfactant, in double-distilled water and loading itraconazole as the model antifungal drug. Pseudo-ternary phase diagram was developed by titrating different ratios of total oil and water with total surfactant, and Km ratio was fixed at 1:1. Microemulsion formulations were prepared based on the phase diagram and incorporated in gels by adding Carbopol 934P. Nail permeation enhancers like urea and salicylic acid were used to increase drug permeation through the nail plate. Parameters like drug loading, clarity, particle size distribution, drug entrapment efficiency (DEE), drug release profile, release kinetics and nail uptake were checked for the evaluation of the formulations. RESULTS: Complete release of drug from the formulation varied from 60 to 120 min. The optimized formulation had DEE of 92.75%, complete drug release in 60 min and highest nail uptake of 0.386%/mm(2) (39 µg of drug) with 5% urea as nail permeation enhancer. CONCLUSION: The formulation may prove beneficial in safer treatment of onychomycosis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Itraconazol/administración & dosificación , Uñas/metabolismo , Onicomicosis/tratamiento farmacológico , Administración Tópica , Antifúngicos/administración & dosificación , Antifúngicos/efectos adversos , Química Farmacéutica/métodos , Liberación de Fármacos , Emulsiones , Excipientes/química , Geles , Humanos , Itraconazol/efectos adversos , Tamaño de la Partícula , Permeabilidad , Tensoactivos/química , Urea/química
13.
J Liposome Res ; 24(2): 83-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24160895

RESUMEN

Liposomes are well known lipid carriers for drug delivery of bioactive molecules encapsulated inside their membrane. Liposomes as skin drug delivery systems were initially promoted primarily for localized effects with minimal systemic delivery. Subsequently, a novel vesicular system, transferosomes was reported for transdermal delivery with efficiency similar to subcutaneous injection. The multiple bilayered organizations of lipids applied in these vesicles structure are somewhat similar to complex nature of stratum corneal intercellular lipids domains. The incorporation of novel agents into these lipid vesicles results in the loss of entrapped markers but it is similar to fluidization of stratum corneum lipids on treatment with a penetration enhancer. This approach generated the utility of penetration enhancers/fluidizing agents in lipids vesicular systems for skin delivery. For the transdermal and topical applications of liposomes, fluidity of bilayer lipid membrane is rate limiting which governs the permeation. This article critically reviews the relevance of using different types of vesicles as a model for skin in permeation enhancement studies. This study has also been designed to encompass all enhancement measurements and analytical tools for characterization of permeability in liposomal vesicular system.


Asunto(s)
Liposomas/química , Fluidez de la Membrana , Administración Cutánea , Animales , Rastreo Diferencial de Calorimetría , Difusión , Sistemas de Liberación de Medicamentos , Elasticidad , Espectroscopía de Resonancia por Spin del Electrón , Epidermis , Fluidez de la Membrana/efectos de los fármacos , Ratones Pelados , Permeabilidad , Fosfatidilcolinas/química , Absorción Cutánea , Tensoactivos/química , Termodinámica
14.
Heliyon ; 10(7): e28457, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586388

RESUMEN

ß-carotene is obtained from both plants and animals and has been the subject of intense research because of its provitamin-A, antioxidant, and anticancer effects. Its limited absorption and oxidative degradation significantly reduce its antitumor efficacy when taken orally. In our study, we utilize a central composite design to develop "bio-safe and highly bio-compatible" solid lipid nanoparticles (SLNs) by using only the combination of palmitic acid and poloxamer-407, a block co-polymer as a surfactant. The current research aim to develop and characterize SLNs loaded with ß-carotene to improve their bioavailability and therapeutic efficacy. In addition, the improved cytotoxicity of solid lipid nanoparticles loaded with ß-carotene was screened in-vitro in human breast cancer cell lines (MCF-7). The nanoparticles exhibits good stability, as indicated by their mean zeta potential of -26.3 ± 1.3 mV. The particles demonstrated high drug loading and entrapment capabilities. The fabricated nanoparticle's prolonged release potential was shown by the in-vitro release kinetics, which showed a first-order release pattern that adhered to the Higuchi model and showed a slow, linear, and steady release over 48 h. Moreover, a diffusion-type release mechanism was used to liberate ß-carotene from the nanoparticles. For six months, the nanoparticles also showed a notable degree of physical stability. Lastly, using the MTT assay, the anti-cancer properties of ß-carotene-loaded solid lipid nanoparticles were compared with intact ß-carotene on MCF-7 cell lines. The cytotoxicity tests have shown that the encapsulation of ß-carotene in the lipid bilayers of the optimized formulation does not interfere with the anti-cancer activity of the drug. When compared to standard ß-carotene, ß-carotene loaded SLNs showed enhanced anticancer efficacy and it is a plausible therapeutic candidate for enhancing the solubility of water-insoluble and degradation-sensitive biotherapeutics like ß-carotene.

15.
Curr Cancer Drug Targets ; 23(8): 620-633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843367

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the foremost causes of cancer-related morbidities worldwide. Novel nanotechnology-backed drug delivery stratagems, including molecular targeting of the chemotherapeutic payload, have been considered. However, no quantum leap in the gross survival rate of patients with PDAC has been realized. One of the predominant causes behind this is tumor desmoplasia, a dense and heterogenous stromal extracellular matrix of the tumor, aptly termed tumor microenvironment (TME). It plays a pivotal role in the tumor pathogenesis of PDAC as it occupies most of the tumor mass, making PDAC one of the most stromal-rich cancers. The complex crosstalk between the tumor and dynamic components of the TME impacts tumor progression and poses a potential barrier to drug delivery. Understanding and deciphering the complex cascade of tumorstromal interactions are the need of the hour so that we can develop neoteric nano-carriers to disrupt the stroma and target the tumor. Nanodiamonds (NDs), due to their unique surface characteristics, have emerged as a promising nano delivery system in various pre-clinical cancer models and have the potential to deliver the chemotherapeutic payload by moving beyond the dynamic tumor-stromal barrier. It can be the next revolution in nanoparticle-mediated pancreatic cancer targeting.


Asunto(s)
Carcinoma Ductal Pancreático , Nanodiamantes , Neoplasias Pancreáticas , Humanos , Nanodiamantes/uso terapéutico , Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Expert Opin Ther Pat ; 33(10): 681-699, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37991186

RESUMEN

INTRODUCTION: Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED: This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION: For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Neoplasias Pancreáticas , Humanos , Liposomas/uso terapéutico , Sistemas de Liberación de Medicamentos , Patentes como Asunto , Nanotecnología , Neoplasias Pancreáticas/tratamiento farmacológico
17.
Ther Deliv ; 14(9): 543-569, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37671556

RESUMEN

Atopic dermatitis is a prevalent chronic skin inflammation affecting 2.1 to 4.1% of adults globally. The complexity of its pathogenesis and the relapsing nature make it challenging to treat. Current treatments follow European Academy of Dermatology and Venerology guidelines, but advanced cases with recurring lesions lack effective therapies. To address this gap, researchers are exploring nanotechnology for targeted drug delivery. Nanoparticles offer benefits such as improved drug retention, stability, controlled release and targeted delivery through the disrupted epidermal barrier. This integrated review evaluates the current state of AD treatment and highlights the potential of novel nano-formulations as a promising approach to address the disease.


Atopic dermatitis is a skin disease and difficult to treat. It happens because of various reasons like skin barrier problems, weather conditions, irritants and allergens from microorganisms. The current treatments do not fully cure the disease, and there's no established treatment for it but there is hope in nanotechnology and nanoformulations. Nano formulations are preparations with particles between 8 and 250 nm. Moreover, studies with animals and humans show promising results with nanoformulations. This review paper explores different ways to use nanotechnology to treat atopic dermatitis. It might lead to exciting new treatments in the future.


Asunto(s)
Dermatitis Atópica , Adulto , Humanos , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/etiología , Dermatitis Atópica/patología , Inflamación/tratamiento farmacológico , Epidermis , Sistemas de Liberación de Medicamentos , Nanotecnología
18.
ACS Omega ; 8(45): 43151-43162, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024765

RESUMEN

Myo-inositol hexakisphosphates (IHPs) or phytates are the most abundant organic phosphates having the potential to serve as a phosphorus reserve in soil. Understanding the fate of IHP interaction with soil minerals tends to be crucial for its efficient storage and utilization as a slow-release organic phosphate fertilizer. We have systematically compared the effective intercalation strategy of a phytate onto Zn-Fe layered double hydroxide (LDH) acting as storage/carrier material through coprecipitation and anion exchange. Powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, FTIR spectra, and molecular modeling demonstrated the formation of phytate-intercalated Zn-Fe LDH through coprecipitation with a maximum loading of 41.34% (w/w) in the pH range of ∼9-10 in a vertical alignment through monolayer formation. No intercalation product was obtained from the anion exchange method, which was concluded based on the absence of shifting in the XRD (003) peak. A change in the zeta potential values from positive to negative and subsequent increase in solution pH, with decreasing phytate concentration, are suggestive of adsorption of IHP onto the LDH surface. The batch adsorption data were best fitted with Langmuir isotherm equation and followed the pseudo-second-order kinetic model. The maximum adsorption capacity was found to be 45.87 mg g-1 at a temperature of 25 ± 0.5 °C and pH 5.63.

19.
Pharm Nanotechnol ; 10(1): 42-55, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34951376

RESUMEN

BACKGROUND: The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE: This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. DISCUSSION: NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. CONCLUSION: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.


Asunto(s)
Nanodiamantes , Encéfalo/diagnóstico por imagen , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales , Humanos , Liposomas , Nanopartículas
20.
Pharm Nanotechnol ; 10(4): 268-278, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35946098

RESUMEN

The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.


Asunto(s)
Oftalmopatías , Humanos , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Ojo/metabolismo , Sistemas de Liberación de Medicamentos , Nanomedicina , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA