Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(16): 11189-11198, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35878000

RESUMEN

Atmospheric aerosols are important drivers of Arctic climate change through aerosol-cloud-climate interactions. However, large uncertainties remain on the sources and processes controlling particle numbers in both fine and coarse modes. Here, we applied a receptor model and an explainable machine learning technique to understand the sources and drivers of particle numbers from 10 nm to 20 µm in Svalbard. Nucleation, biogenic, secondary, anthropogenic, mineral dust, sea salt and blowing snow aerosols and their major environmental drivers were identified. Our results show that the monthly variations in particles are highly size/source dependent and regulated by meteorology. Secondary and nucleation aerosols are the largest contributors to potential cloud condensation nuclei (CCN, particle number with a diameter larger than 40 nm as a proxy) in the Arctic. Nonlinear responses to temperature were found for biogenic, local dust particles and potential CCN, highlighting the importance of melting sea ice and snow. These results indicate that the aerosol factors will respond to rapid Arctic warming differently and in a nonlinear fashion.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Polvo/análisis , Aprendizaje Automático , Tamaño de la Partícula , Svalbard
2.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235527

RESUMEN

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1 °C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m-3 for PM2.5 and ≈3 µg m-3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m-3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

3.
Int J Biometeorol ; 58(1): 31-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23299392

RESUMEN

Variations in total ozone column and sun exposures able to cause erythema and damage the DNA molecules were observed by the narrow-band filter radiometer UV-RAD in Bologna, Italy from 2005 to 2010. The ozone columns determined from the UV-RAD measurements were found to be close to those provided by the satellite Ozone Monitoring Instrument (OMI) showing an average discrepancy of 1% with standard deviation of ± 6%. Analysis of the data highlights a well-marked annual cycle of the ozone column variations while the oscillations with periods of 8, 18 and 34 months present much smaller amplitudes. The influence of the frequency of solar irradiance measurements on the accuracy of the evaluated daily exposure dose has been studied and it was found that time intervals no longer than 5-10 min between the measurements of erythema and DNA damage effective UV irradiances provide a satisfactory assessment of the corresponding daily exposures. The latter do not present significant year-to-year variations for the period under study, while their annual distributions show slight changes likely due to the specific cloud cover and ozone column variability for different years. The annual erythemal exposure dose for 2007-2010 varied between 603.7 and 638.1 kJ m(-2), while the corresponding sun exposure affecting DNA changed from 6.38 to 7.91 kJ m(-2).


Asunto(s)
Modelos Teóricos , Ozono/análisis , Dosis de Radiación , Rayos Ultravioleta , Daño del ADN , Italia
4.
Environ Sci Ecotechnol ; 22: 100458, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39175511

RESUMEN

Organic matter is crucial in aerosol-climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (<100 nm diameter) and accumulation mode particles (>100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.

5.
Radiat Environ Biophys ; 50(1): 219-29, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20878331

RESUMEN

An approach is proposed to assess the periods of human skin exposure to solar ultraviolet-A (UV-A, 315-400 nm) irradiance in natural conditions that are able to yield doses found to trigger carcinogenesis in laboratory experiments. Weighting functions, adopted to perform such estimate are constructed, allowing for a comparison between environmental and laboratory doses. Furthermore, the impact of stratum corneum (SC) thickness on the studied environmental doses was investigated. Based on laboratory studies, it was found that exposure periods of less than a month, at mid-latitudes, could provide irradiance doses capable of causing tumor formation. The duration of these exposure periods closely depends on the exposure regime, atmospheric conditions and SC thickness. It is believed that the presented evaluations could provide a useful preliminary estimation of the risk associated with environmental UV-A exposure prior to the formulation of the corresponding action spectra and determination of the threshold doses.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Rayos Ultravioleta/efectos adversos , Línea Celular Tumoral , Humanos , Laboratorios , Neoplasias Inducidas por Radiación , Dosis de Radiación , Medición de Riesgo , Piel/efectos de la radiación , Factores de Tiempo
6.
Bull Atmos Sci Technol ; 2(1-4): 8, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38624617

RESUMEN

The present study discusses the effect of the ozone depletion that occurred over the Arctic in 2020 on the ozone column in central and southern Europe by analysing a data set obtained from ground-based measurements at six stations placed from 79 to 42°N. Over the northernmost site (Ny-Ålesund), the ozone column decreased by about 45% compared to the climatological average at the beginning of April, and its values returned to the normal levels at the end of the month. Southwards, the anomaly gradually reduced to nearly 15% at 42°N (Rome) and the ozone minimum was detected with a delay from about 6 days at 65°N to 20 days at 42°N. At the same time, the evolution of the ozone column at the considered stations placed below the polar circle corresponded to that observed at Ny-Ålesund, but at 42°-46°N, the ozone column turned back to the typical values at the end of May. This similarity in the ozone evolutional patterns at different latitudes and the gradually increasing delay of the minimum occurrences towards the south allows the assumption that the ozone columns at lower latitudes were affected by the phenomenon in the Arctic. The ozone decrease observed at Aosta (46°N) combined with predominantly cloud-free conditions resulted in about an 18% increase in the erythemally weighted solar ultraviolet irradiance reaching the Earth's surface in May.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA