Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Cell Biol ; 5(2): 219-25, 1993 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8389567

RESUMEN

Meiosis can be viewed both as a process of cell differentiation and as a modification of the mitotic cell cycle. Here we describe recent progress in defining a variety of regulatory mechanisms that govern the meiotic divisions. Studies in the yeast Saccharomyces cerevisiae and in higher organisms have led to complementary insights into these controls.


Asunto(s)
Meiosis/genética , Animales , Escherichia coli , Femenino , Masculino , Oogénesis , Fosfotransferasas , Saccharomyces cerevisiae , Schizosaccharomyces , Espermatogénesis
2.
Mol Cell Biol ; 9(10): 4488-94, 1989 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-2685553

RESUMEN

The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.


Asunto(s)
Replicación del ADN/genética , Replicón/fisiología , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Cromosomas Fúngicos , Sondas de ADN , Cinética , Replicón/genética , Saccharomyces cerevisiae/metabolismo
3.
Genetics ; 138(1): 47-60, 1994 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8001793

RESUMEN

The meiosis-specific yeast gene SPO13 has been previously shown to be required to obtain two successive divisions in meiosis. We report here that vegetative expression of this gene causes a CDC28-dependent cell-cycle arrest at mitosis. Overexpression of SPO13 during meiosis causes a transient block to completion of the meiosis I division and suppresses the inability of cdc28ts strains to execute meiosis II. The spo13 defect can be partially suppressed by conditions that slow progression of the first meiotic division. Based on the results presented below, we propose that SPO13 acts as a meiotic timing function by transiently blocking progression through the meiosis I division, thereby allowing (1) coordination of the first division with assembly of the reductional segregation apparatus, and (2) subsequent entry into a second round of segregation to separate replicated sister chromatids without an intervening S-phase.


Asunto(s)
Genes Fúngicos , Meiosis/genética , Mitosis/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Núcleo Celular/ultraestructura , Clonación Molecular , Expresión Génica , Modelos Genéticos , Saccharomyces cerevisiae/crecimiento & desarrollo
4.
Cell ; 54(4): 505-13, 1988 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-3042152

RESUMEN

The time of replication of centromeres and telomeres of the yeast S. cerevisiae was determined by performing Meselson-Stahl experiments with synchronized cells. The nine centromeres examined become hybrid in density early in S phase, eliminating the possibility that a delay in the replication of centromeres until mitosis is responsible for sister chromatid adherence and proper chromosome segregation at anaphase. The conserved sequence element Y', present at most telomeres, replicates late in S phase, as do the unique sequences adjacent to five specific telomeres. The early and late replication times of these structural elements may be either essential for their proper function or a consequence of some architectural feature of the chromosome.


Asunto(s)
Centrómero/fisiología , Cromosomas/fisiología , Replicación del ADN , Saccharomyces cerevisiae/genética , Hibridación de Ácido Nucleico , Factores de Tiempo
5.
Chromosoma ; 85(1): 1-9, 1982.
Artículo en Inglés | MEDLINE | ID: mdl-6284451

RESUMEN

We have compared the structure of macronuclear DNA molecules that contain rRNA genes of four hypotricous ciliates, Stylonychia pustulata, Euplotes aediculatus, Oxytricha fallax and Oxytricha nova. The macronuclear rDNA, like all macronuclear DNA in hypotrichs, exists as achromosomal molecules of approximately single-gene size. The rDNA molecules have been cloned intact as recombinant plasmids and analyzed by restriction mapping and Southern hybridization. The sites of restriction enzymes BamHI, EcoRI, HindIII, PstI, PvuII and XhoI have similar but not identical patterns in Stylonychia and the two Oxytricha rDNAs. The restriction pattern of Euplotes rDNA is unlike those of the other three, with only one site of seventeen in the same position. Despite this divergence in nucleotide sequence, the overall structure of the rDNA molecules in the four hypotrichs is constant. The size of all the rDNA molecules is the same, 7.49 kb. Also, the positions of the regions coding for 19S and 25S rRNA are alike. The 25S coding region is at the 5' end of the DNA template strand (3' end of the RNA transcript), within 500 base pairs of the terminus of the DNA molecule. The 19S coding region is adjacent to the 25S region with less than 500 base pairs of spacer lying between the two genes. The largest non-coding sequence is at the 3' end of the DNA molecule adjoining the 19S RNA gene. The 3' non-coding regions show greater sequence divergence among the different rDNAs than do the coding regions. The similarity in size and organization of these molecules and the variability in the restriction patterns suggest that the gene structure is under tighter evolutionary constraint than is the primary nucleotide sequence.


Asunto(s)
Cilióforos/genética , ADN/genética , ARN Ribosómico/genética , Animales , Clonación Molecular , Enzimas de Restricción del ADN , Hibridación de Ácido Nucleico , Plásmidos , Especificidad de la Especie
6.
Proc Natl Acad Sci U S A ; 87(23): 9406-10, 1990 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2123556

RESUMEN

The SPO13 gene, required for meiosis I segregation in Saccharomyces cerevisiae, produces two developmentally regulated transcripts (1.0 and 1.4 kilobases) that differ in length at their 5' ends. The shorter transcript is sufficient to complement the spo13-1 mutation and contains a major open reading frame encoding a highly basic protein of 33.4 kilodaltons. A fragment upstream (-170 to -8) of the open reading frame confers meiosis-specific transcription on a spo13-HIS3 fusion. Deletions at the 5' end of spo13-lacZ fusions define a region between -140 and -80 that is essential for meiosis-specific expression. This region acts in an orientation-independent manner and is responsive to the MAT-RME regulatory cascade. It contains a 10-base-pair sequence, TAGCCGCCGA, found in a number of meiosis-specific genes, that appears to be required for SPO13 expression. This sequence is identical to URS1, a ubiquitous mitotic repressor element.


Asunto(s)
Genes Fúngicos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Hongos/genética , Meiosis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Ácido Nucleico , Esporas Fúngicas/fisiología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA