Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 21(8): 401-415, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32555340

RESUMEN

The human motor cortex comprises a microcircuit of five interconnected layers with different cell types. In this Review, we use a layer-specific and cell-specific approach to integrate physiological accounts of this motor cortex microcircuit with the pathophysiology of neurodegenerative diseases affecting motor functions. In doing so we can begin to link motor microcircuit pathology to specific disease stages and clinical phenotypes. Based on microcircuit physiology, we can make future predictions of axonal loss and microcircuit dysfunction. With recent advances in high-resolution neuroimaging we can then test these predictions in humans in vivo, providing mechanistic insights into neurodegenerative disease.


Asunto(s)
Corteza Motora/fisiología , Vías Nerviosas/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Animales , Humanos , Corteza Motora/anatomía & histología , Corteza Motora/citología
2.
Brain ; 146(11): 4532-4546, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37587097

RESUMEN

Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Células Endoteliales/metabolismo , Encéfalo/patología , Sustancia Gris/patología , Atrofia/patología , Imagen por Resonancia Magnética
3.
Cereb Cortex ; 33(9): 5704-5716, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36520483

RESUMEN

Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (${R_{1}}$), effective transverse relaxation rate (${R_{2}}^{\ast }$), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (${R_{2}}^{\ast }$ at 3T, ${R_{1}}$ at 7T), endothelial cells (${R_{1}}$ and MTsat at 3T), microglia (${R_{1}}$ and MTsat at 3T, ${R_{1}}$ at 7T), and oligodendrocytes and oligodendrocyte precursor cells (${R_{1}}$ at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types.


Asunto(s)
Neocórtex , Humanos , Células Endoteliales , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos
4.
Brain ; 145(11): 3953-3967, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35758263

RESUMEN

Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest stages of Huntington's disease (preHD) 10-15 years from clinical diagnosis. However, whether widespread network connectivity changes are seen in gene carriers much further from onset has yet to be explored. We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on average 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression. We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, correlated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical regions associated with regional expression of genes specific to neuronal cells. This relationship was validated using single-nucleus RNAseq data from post-mortem Huntington's disease and control brains showing enrichment of neuronal-specific genes that are differentially expressed in Huntington's disease. Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregulated connectivity correlating with increased disease burden. These changes occur among brain areas that show regional expression of genes specific to neuronal GABAergic and glutamatergic cells.


Asunto(s)
Enfermedad de Huntington , Adulto , Humanos , Enfermedad de Huntington/patología , Filamentos Intermedios , Imagen por Resonancia Magnética , Mapeo Encefálico , Encéfalo/patología
6.
J Neurol Neurosurg Psychiatry ; 93(2): 169-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34583941

RESUMEN

OBJECTIVE: Visual hallucinations are common in Parkinson's disease (PD) and associated with worse outcomes. Large-scale network imbalance is seen in PD-associated hallucinations, but mechanisms remain unclear. As the thalamus is critical in controlling cortical networks, structural thalamic changes could underlie network dysfunction in PD hallucinations. METHODS: We used whole-brain fixel-based analysis and cortical thickness measures to examine longitudinal white and grey matter changes in 76 patients with PD (15 hallucinators, 61 non-hallucinators) and 26 controls at baseline, and after 18 months. We compared white matter and cortical thickness, adjusting for age, gender, time-between-scans and intracranial volume. To assess thalamic changes, we extracted volumes for 50 thalamic subnuclei (25 each hemisphere) and mean fibre cross-section (FC) for white matter tracts originating in each subnucleus and examined longitudinal change in PD-hallucinators versus non-hallucinators. RESULTS: PD hallucinators showed white matter changes within the corpus callosum at baseline and extensive posterior tract involvement over time. Less extensive cortical thickness changes were only seen after follow-up. White matter connections from the right medial mediodorsal magnocellular thalamic nucleus showed reduced FC in PD hallucinators at baseline followed by volume reductions longitudinally. After follow-up, almost all thalamic subnuclei showed tract losses in PD hallucinators compared with non-hallucinators. INTERPRETATION: PD hallucinators show white matter loss particularly in posterior connections and in thalamic nuclei, over time with relatively preserved cortical thickness. The right medial mediodorsal thalamic nucleus shows both connectivity and volume loss in PD hallucinations. Our findings provide mechanistic insights into the drivers of network imbalance in PD hallucinations and potential therapeutic targets.


Asunto(s)
Sustancia Gris/fisiopatología , Alucinaciones/fisiopatología , Enfermedad de Parkinson/fisiopatología , Tálamo/fisiopatología , Sustancia Blanca/fisiopatología , Anciano , Cuerpo Calloso/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
7.
Brain ; 144(6): 1787-1798, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33704443

RESUMEN

The mechanisms responsible for the selective vulnerability of specific neuronal populations in Parkinson's disease are poorly understood. Oxidative stress secondary to brain iron accumulation is one postulated mechanism. We measured iron deposition in 180 cortical regions of 96 patients with Parkinson's disease and 35 control subjects using quantitative susceptibility mapping. We estimated the expression of 15 745 genes in the same regions using transcriptomic data from the Allen Human Brain Atlas. Using partial least squares regression, we then identified the profile of gene transcription in the healthy brain that underlies increased cortical iron in patients with Parkinson's disease relative to controls. Applying gene ontological tools, we investigated the biological processes and cell types associated with this transcriptomic profile and identified the sets of genes with spatial expression profiles in control brains that correlated significantly with the spatial pattern of cortical iron deposition in Parkinson's disease. Gene ontological analyses revealed that these genes were enriched for biological processes relating to heavy metal detoxification, synaptic function and nervous system development and were predominantly expressed in astrocytes and glutamatergic neurons. Furthermore, we demonstrated that the genes differentially expressed in Parkinson's disease are associated with the pattern of cortical expression identified in this study. Our findings provide mechanistic insights into regional selective vulnerabilities in Parkinson's disease, particularly the processes involving iron accumulation.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Hierro/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuroimagen/métodos , Estrés Oxidativo/fisiología , Transcriptoma
9.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34272784

RESUMEN

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Asunto(s)
Corteza Cerebral , Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Expresión Génica/fisiología , Vaina de Mielina , Red Nerviosa , Sustancia Blanca , Adulto , Atlas como Asunto , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
11.
Mov Disord ; 36(5): 1191-1202, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33421201

RESUMEN

BACKGROUND: Visual dysfunction predicts dementia in Parkinson's disease (PD), but whether this translates to structural change is not known. The objectives of this study were to identify longitudinal white matter changes in patients with Parkinson's disease and low visual function and also in those who developed mild cognitive impairment. METHODS: We used fixel-based analysis to examine longitudinal white matter change in PD. Diffusion MRI and clinical assessments were performed in 77 patients at baseline (22 low visual function/55 intact vision and 13 PD-mild cognitive impairment/51 normal cognition) and 25 controls and again after 18 months. We compared microstructural changes in fiber density, macrostructural changes in fiber bundle cross-section and combined fiber density and cross-section, across white matter, adjusting for age, sex, and intracranial volume. RESULTS: Patients with PD and visual dysfunction showed worse cognitive performance at follow-up and were more likely to develop mild cognitive impairment compared with those with normal vision (P = 0.008). Parkinson's with poor visual function showed diffuse microstructural and macrostructural changes at baseline, whereas those with mild cognitive impairment showed fewer baseline changes. At follow-up, Parkinson's with low visual function showed widespread macrostructural changes, involving the fronto-occipital fasciculi, external capsules, and middle cerebellar peduncles bilaterally. No longitudinal change was seen in those with mild cognitive impairment at baseline or converters, even when the 2 groups were combined. CONCLUSION: Parkinson's patients with poor visual function show increased white matter damage over time, providing further evidence for visual function as a marker of imminent cognitive decline. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Sustancia Blanca , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
12.
Brain ; 143(11): 3435-3448, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33118028

RESUMEN

Visual hallucinations are common in Parkinson's disease and are associated with poorer prognosis. Imaging studies show white matter loss and functional connectivity changes with Parkinson's visual hallucinations, but the biological factors underlying selective vulnerability of affected parts of the brain network are unknown. Recent models for Parkinson's disease hallucinations suggest they arise due to a shift in the relative effects of different networks. Understanding how structural connectivity affects the interplay between networks will provide important mechanistic insights. To address this, we investigated the structural connectivity changes that accompany visual hallucinations in Parkinson's disease and the organizational and gene expression characteristics of the preferentially affected areas of the network. We performed diffusion-weighted imaging in 100 patients with Parkinson's disease (81 without hallucinations, 19 with visual hallucinations) and 34 healthy age-matched controls. We used network-based statistics to identify changes in structural connectivity in Parkinson's disease patients with hallucinations and performed an analysis of controllability, an emerging technique that allows quantification of the influence a brain region has across the rest of the network. Using these techniques, we identified a subnetwork of reduced connectivity in Parkinson's disease hallucinations. We then used the Allen Institute for Brain Sciences human transcriptome atlas to identify regional gene expression patterns associated with affected areas of the network. Within this network, Parkinson's disease patients with hallucinations showed reduced controllability (less influence over other brain regions), than Parkinson's disease patients without hallucinations and controls. This subnetwork appears to be critical for overall brain integration, as even in controls, nodes with high controllability were more likely to be within the subnetwork. Gene expression analysis of gene modules related to the affected subnetwork revealed that down-weighted genes were most significantly enriched in genes related to mRNA and chromosome metabolic processes (with enrichment in oligodendrocytes) and upweighted genes to protein localization (with enrichment in neuronal cells). Our findings provide insights into how hallucinations are generated, with breakdown of a key structural subnetwork that exerts control across distributed brain regions. Expression of genes related to mRNA metabolism and membrane localization may be implicated, providing potential therapeutic targets.


Asunto(s)
Regulación de la Expresión Génica/genética , Alucinaciones/genética , Alucinaciones/fisiopatología , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Anciano , Algoritmos , Mapeo Cromosómico , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Alucinaciones/etiología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
13.
Biometrics ; 76(3): 995-1006, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31850527

RESUMEN

Biomarkers are often organized into networks, in which the strengths of network connections vary across subjects depending on subject-specific covariates (eg, genetic variants). Variation of network connections, as subject-specific feature variables, has been found to predict disease clinical outcome. In this work, we develop a two-stage method to estimate biomarker networks that account for heterogeneity among subjects and evaluate network's association with disease clinical outcome. In the first stage, we propose a conditional Gaussian graphical model with mean and precision matrix depending on covariates to obtain covariate-dependent networks with connection strengths varying across subjects while assuming homogeneous network structure. In the second stage, we evaluate clinical utility of network measures (connection strengths) estimated from the first stage. The second-stage analysis provides the relative predictive power of between-region network measures on clinical impairment in the context of regional biomarkers and existing disease risk factors. We assess the performance of proposed method by extensive simulation studies and application to a Huntington's disease (HD) study to investigate the effect of HD causal gene on the rate of change in motor symptom through affecting brain subcortical and cortical gray matter atrophy connections. We show that cortical network connections and subcortical volumes, but not subcortical connections are identified to be predictive of clinical motor function deterioration. We validate these findings in an independent HD study. Lastly, highly similar patterns seen in the gray matter connections and a previous white matter connectivity study suggest a shared biological mechanism for HD and support the hypothesis that white matter loss is a direct result of neuronal loss as opposed to the loss of myelin or dysmyelination.


Asunto(s)
Enfermedad de Huntington , Sustancia Blanca , Atrofia/patología , Encéfalo/patología , Humanos , Enfermedad de Huntington/genética , Imagen por Resonancia Magnética
14.
Brain ; 141(9): 2545-2560, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137209

RESUMEN

Dementia in Parkinson's disease affects 50% of patients within 10 years of diagnosis but there is wide variation in severity and timing. Thus, robust neuroimaging prediction of cognitive involvement in Parkinson's disease is important: (i) to identify at-risk individuals for clinical trials of potential new treatments; (ii) to provide reliable prognostic information for individuals and populations; and (iii) to shed light on the pathophysiological processes underpinning Parkinson's disease dementia. To date, neuroimaging has not made major contributions to predicting cognitive involvement in Parkinson's disease. This is perhaps unsurprising considering conventional methods rely on macroscopic measures of topographically distributed neurodegeneration, a relatively late event in Parkinson's dementia. However, new technologies are now emerging that could provide important insights through detection of other potentially relevant processes. For example, novel MRI approaches can quantify magnetic susceptibility as a surrogate for tissue iron content, and increasingly powerful mathematical approaches can characterize the topology of brain networks at the systems level. Here, we present an up-to-date overview of the growing role of neuroimaging in predicting dementia in Parkinson's disease. We discuss the most relevant findings to date, and consider the potential of emerging technologies to detect the earliest signs of cognitive involvement in Parkinson's disease.


Asunto(s)
Demencia/diagnóstico por imagen , Neuroimagen/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Encéfalo/fisiopatología , Neuronas Colinérgicas/fisiología , Cognición/fisiología , Disfunción Cognitiva/fisiopatología , Demencia/fisiopatología , Progresión de la Enfermedad , Neuronas Dopaminérgicas/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/fisiopatología , Pronóstico , Factores de Riesgo
16.
Hum Brain Mapp ; 38(6): 2819-2829, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28294457

RESUMEN

Depression is common in premanifest Huntington's disease (preHD) and results in significant morbidity. We sought to examine how variations in structural and functional brain networks relate to depressive symptoms in premanifest HD and healthy controls. Brain networks were constructed using diffusion tractography (70 preHD and 81 controls) and resting state fMRI (92 preHD and 94 controls) data. A sub-network associated with depression was identified in a data-driven fashion and network-based statistics was used to investigate which specific connections correlated with depression scores. A replication analysis was then performed using data from a separate study. Correlations between depressive symptoms with increased functional connectivity and decreased structural connectivity were seen for connections in the default mode network (DMN) and basal ganglia in preHD. This study reveals specific connections in the DMN and basal ganglia that are associated with depressive symptoms in preHD. Hum Brain Mapp 38:2819-2829, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Trastorno Depresivo/patología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Apatía , Estudios de Cohortes , Trastorno Depresivo/etiología , Femenino , Humanos , Enfermedad de Huntington/complicaciones , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/patología , Oxígeno/sangre , Escalas de Valoración Psiquiátrica
17.
J Neurochem ; 139(1): 22-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27344050

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative condition with no therapeutic intervention known to alter disease progression, but several trials are ongoing and biomarkers of disease progression are needed. Tau is an axonal protein, often altered in neurodegeneration, and recent studies pointed out its role on HD neuropathology. Our goal was to study whether cerebrospinal fluid (CSF) tau is a biomarker of disease progression in HD. After informed consent, healthy controls, pre-symptomatic and symptomatic gene expansion carriers were recruited from two HD clinics. All participants underwent assessment with the Unified HD Rating Scale '99 (UHDRS). CSF was obtained according to a standardized lumbar puncture protocol. CSF tau was quantified using enzyme-linked immunosorbent assay. Comparisons between two groups were tested using ancova. Pearson's correlation coefficients were calculated for disease progression. Significance level was defined as p < 0.05. Seventy-six participants were included in this cross-sectional multicenter international pilot study. Age-adjusted CSF tau was significantly elevated in gene expansion carriers compared with healthy controls (p = 0.002). UHDRS total functional capacity was significantly correlated with CSF tau (r = -0.29, p = 0.004) after adjustment for age, and UHDRS total motor score was significantly correlated with CSF tau after adjustment for age (r = 0.32, p = 0.002). Several UHDRS cognitive tasks were also significantly correlated with CST total tau after age-adjustment. This study confirms that CSF tau concentrations in HD gene mutation carriers are increased compared with healthy controls and reports for the first time that CSF tau concentration is associated with phenotypic variability in HD. These conclusions strengthen the case for CSF tau as a biomarker in HD. In the era of novel targeted approaches to Huntington's disease, reliable biomarkers are needed. We quantified Tau protein, a marker of neuronal death, in cerebrospinal fluid and found it was increased in patients with Huntington's disease and predicted motor, cognitive, and functional disability in patients. It is therefore likely to be a biomarker of disease progression, and possibly of therapeutic response. Read the Editorial Highlight for this article on page 9.


Asunto(s)
Enfermedad de Huntington/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Adulto , Anciano , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Heterocigoto , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Persona de Mediana Edad , Fenotipo , Proyectos Piloto , Valor Predictivo de las Pruebas , Adulto Joven
18.
Hum Brain Mapp ; 37(11): 4112-4128, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27400836

RESUMEN

Huntington's disease (HD) is a genetic neurological disorder resulting in cognitive and motor impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, associative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and 18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological changes in functional connectivity between 182 regions within cortico-basal ganglia networks using graph theory measures. We found significant differences for global graph theory measures in HD but not in preHD. The average shortest path length (L) decreased, which indicated a change toward the random network topology. HD patients also demonstrated increases in degree k, reduced betweeness centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) correlated with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by progressive decreasing hub organization, and these changes aggravate in HD patients with changes in local metrics. HD is characterized by progressive changes in global network interconnectivity, whose network topology becomes more random over time. Hum Brain Mapp 37:4112-4128, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ganglios Basales/diagnóstico por imagen , Ganglios Basales/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/fisiopatología , Adulto , Mapeo Encefálico , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Enfermedad de Huntington/genética , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Tamaño de los Órganos , Síntomas Prodrómicos , Descanso , Índice de Severidad de la Enfermedad
19.
Brain ; 138(Pt 11): 3327-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26384928

RESUMEN

Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington's disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease.


Asunto(s)
Corteza Cerebral/patología , Enfermedad de Huntington/patología , Neostriado/patología , Tálamo/patología , Adulto , Ganglios Basales/patología , Encéfalo/patología , Estudios de Casos y Controles , Núcleo Caudado/patología , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Putamen/patología
20.
Hum Brain Mapp ; 36(5): 1728-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25640796

RESUMEN

Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity.


Asunto(s)
Ganglios Basales/patología , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Adulto , Femenino , Humanos , Enfermedad de Huntington/genética , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Índice de Severidad de la Enfermedad , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA