Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genes Dev ; 23(7): 877-89, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19339691

RESUMEN

The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones Endogámicos C57BL , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes ras/genética , Genes ras/fisiología , Genotipo , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/fisiopatología , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Pronóstico , Proteína 1 Compañera de Translocación de RUNX1 , Proteína p53 Supresora de Tumor/genética
2.
Nat Genet ; 31(2): 133-4, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12021784

RESUMEN

We found that PPM1D, encoding a serine/threonine protein phosphatase, lies within an epicenter of the region at 17q23 that is amplified in breast cancer. We show that overexpression of this gene confers two oncogenic phenotypes on cells in culture: attenuation of apoptosis induced by serum starvation and transformation of primary cells in cooperation with RAS.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 17/genética , Amplificación de Genes , Proteínas de Neoplasias , Fosfoproteínas Fosfatasas/genética , Apoptosis/genética , Neoplasias de la Mama/etiología , Transformación Celular Neoplásica/genética , Femenino , Humanos , Oncogenes/genética , Proteína Fosfatasa 2C
3.
Nat Cell Biol ; 4(11): 859-64, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12389032

RESUMEN

Unrestrained E2F activity forces S phase entry and promotes apoptosis through p53-dependent and -independent mechanisms. Here, we show that deregulation of E2F by adenovirus E1A, loss of Rb or enforced E2F-1 expression results in the accumulation of caspase proenzymes through a direct transcriptional mechanism. Increased caspase levels seem to potentiate cell death in the presence of p53-generated signals that trigger caspase activation. Our results demonstrate that mitogenic oncogenes engage a tumour suppressor network that functions at multiple levels to efficiently induce cell death. The data also underscore how cell cycle progression can be coupled to the apoptotic machinery.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Factores de Transcripción/química , Factores de Transcripción/fisiología , Proteínas E1A de Adenovirus/metabolismo , Animales , Northern Blotting , Caspasas/genética , Caspasas/metabolismo , Ciclo Celular , Línea Celular Tumoral , Islas de CpG , Citocromos c/metabolismo , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Fibroblastos/metabolismo , Humanos , Luciferasas/metabolismo , Ratones , Modelos Biológicos , Modelos Genéticos , Regiones Promotoras Genéticas , ARN/química , Proteína de Retinoblastoma/metabolismo , Factores de Tiempo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Mol Cell Biol ; 22(10): 3497-508, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11971980

RESUMEN

Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.


Asunto(s)
Senescencia Celular/fisiología , Genes ras/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Nucleares , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ciclo Celular/fisiología , Fraccionamiento Celular , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Embrión de Mamíferos/fisiología , Activación Enzimática , Fibroblastos/citología , Fibroblastos/metabolismo , Genes p53 , MAP Quinasa Quinasa 1 , Ratones , Ratones Noqueados , Microscopía Fluorescente , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , Temperatura , Proteína p14ARF Supresora de Tumor/metabolismo , Proteínas ras/metabolismo
5.
Cancer Res ; 77(21): 5706-5711, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993414

RESUMEN

Preclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform. This effort, known as the Neurofibromatosis Preclinical Consortium (NFPC), was established to accelerate new treatments for tumors associated with neurofibromatosis type 1 (NF1). At its inception, there were no effective treatments for NF1 and few promising approaches on the horizon. Since 2008, participating laboratories have conducted 95 preclinical trials of 38 drugs or combinations through collaborations with 18 pharmaceutical companies. Importantly, these studies have identified 13 therapeutic targets, which have inspired 16 clinical trials. This review outlines the opportunities and challenges of building this type of consortium and highlights how it can accelerate clinical translation. We believe that this strategy of foundation-academic-industry partnering is generally applicable to many diseases and has the potential to markedly improve the success of therapeutic development. Cancer Res; 77(21); 5706-11. ©2017 AACR.


Asunto(s)
Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Neoplasias/tratamiento farmacológico , Investigación Biomédica Traslacional/métodos , Animales , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias/complicaciones , Neoplasias/diagnóstico , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/tratamiento farmacológico
6.
J Biol Chem ; 280(23): 21915-23, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15741165

RESUMEN

The adenovirus E1A oncoprotein promotes proliferation and transformation by binding cellular proteins, including members of the retinoblastoma protein family, the p300/CREB-binding protein transcriptional coactivators, and the p400-TRRAP chromatin-remodeling complex. E1A also promotes apoptosis, in part, by engaging the ARF-p53 tumor suppressor pathway. We show that E1A induces ARF and p53 and promotes apoptosis in normal fibroblasts by physically associating with the retinoblastoma protein and a p400-TRRAP complex and that its interaction with p300 is largely dispensable for these effects. We further show that E1A increases p400 expression and, conversely, that suppression of p400 using stable RNA interference reduces the levels of ARF, p53, and apoptosis in E1A-expressing cells. Therefore, whereas E1A inactivates the retinoblastoma protein, it requires p400 to efficiently promote cell death. These results identify p400 as a regulator of the ARF-p53 pathway and a component of the cellular machinery that couples proliferation to cell death.


Asunto(s)
Proteínas E1A de Adenovirus/fisiología , Apoptosis , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Factores de Ribosilacion-ADP/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Animales , Sitios de Unión , Northern Blotting , Western Blotting , Línea Celular , Supervivencia Celular , Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Proteína p300 Asociada a E1A , Fibroblastos/metabolismo , Eliminación de Gen , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Microscopía Fluorescente , Mutación , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Retroviridae/genética , Relación Estructura-Actividad , Transactivadores/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA