Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913441

RESUMEN

BACKGROUND: Losing or donating a kidney is associated with risks of developing hypertension and albuminuria. Few studies address mechanisms or interventions. We investigate potential benefits of a K+- alkali-enriched diet and the mechanisms underlying proteinuria. METHODS: Male Sprague Dawley rats were fed either a 2% NaCl + 0.95% KCl diet (HNa-LK) or a 0.74% NaCl + 3% K+-alkali diet (HK-alk) for 3 wk prior to uninephrectomy then maintained on respective diets for 12 wk. Blood pressure (by tail-cuff), urine, blood and kidney proteins were analyzed Pre- and Post-uninephrectomy. RESULTS: Pre-uninephrectomy, HK-alk vs. HNa-LK fed rats exhibited similar blood pressures and plasma [K+], [Na+], but lower proximal (NHE3, NBCe1, NaPi2) and higher distal (NCC, ENaC, pendrin) transporter abundance, a pattern facilitating K+ and HCO3- secretion. Post-uninephrectomy, single nephron GFR rose 50% and Li+ clearance doubled with both diets; in HK-alk vs HNa-LK: the rise in blood pressure was less and ammoniagenesis was lower, abundance of proximal tubule transporters remained lower, ENaC-α fell and NCCp rose consistent with K+ conservation. Post-uninephrectomy, independent of diet, albuminuria increased 8-fold and abundance of endocytic receptors was reduced (megalin by 44%, dab2 by 25-35%) and KIM-1 was increased. CONCLUSIONS: The K-alkali-enriched diet blunted post-uninephrectomy hypertension and facilitated acid clearance by suppressing proximal Na+ transporters and increasing K+ -alkali secretion. Further, uninephrectomy associated proteinuria could be attributed, at least in part, to elevated SNGFR coupled to downregulation of megalin which reduced fractional protein endocytosis and Vmax.

2.
Am J Physiol Renal Physiol ; 325(6): F733-F749, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823196

RESUMEN

Chronic infusion of subpressor level of angiotensin II (ANG II) increases the abundance of Na+ transporters along the distal nephron, balanced by suppression of Na+ transporters along the proximal tubule and medullary thick ascending limb (defined as "proximal nephron"), which impacts K+ handling along the entire renal tubule. The objective of this study was to quantitatively assess the impact of chronic ANG II on the renal handling of Na+ and K+ in female rats, using a computational model of the female rat renal tubule. Our results indicate that the downregulation of proximal nephron Na+ reabsorption (TNa), which occurs in response to ANG II-triggered hypertension, involves changes in both transporter abundance and trafficking. Our model suggests that substantial (∼30%) downregulation of active NHE3 in proximal tubule (PT) microvilli is needed to reestablish the Na+ balance at 2 wk of ANG II infusion. The 35% decrease in SGLT2, a known NHE3 regulator, may contribute to this downregulation. Both depression of proximal nephron TNa and stimulation of distal ENaC raise urinary K+ excretion in ANG II-treated females, while K+ loss is slightly mitigated by cortical NKCC2 and NCC upregulation. Our model predicts that K+ excretion may be more significantly limited during ANG II infusion by ROMK inhibition in the distal nephron and/or KCC3 upregulation in the PT, which remain open questions for experimental validation. In summary, our analysis indicates that ANG II hypertension triggers a series of events from distal TNa stimulation followed by compensatory reduction in proximal nephron TNa and accompanying adjustments to limit excessive K+ secretion.NEW & NOTEWORTHY We used a computational model of the renal tubule to assess the impact of 2-wk angiotensin II (ANG II) infusion on the handling of Na+ and K+ in female rats. ANG II strongly stimulates distal Na+ reabsorption and K+ secretion. Simulations indicate that substantial downregulation of proximal tubule NHE3 is needed to reestablish Na+ balance at 2 wk. Proximal adaptations challenge K+ homeostasis, and regulation of distal NCC and specific K+ channels likely limit urinary K+ losses.


Asunto(s)
Angiotensina II , Hipertensión , Túbulos Renales , Potasio , Sodio , Femenino , Animales , Ratas , Túbulos Renales/fisiopatología , Hipertensión/fisiopatología , Angiotensina II/farmacología , Sodio/metabolismo , Potasio/metabolismo , Ratas Sprague-Dawley , Simulación por Computador , Masculino , Simportadores/metabolismo
3.
Curr Opin Nephrol Hypertens ; 32(5): 467-475, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382185

RESUMEN

PURPOSE OF REVIEW: Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS: When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY: We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.


Asunto(s)
Riñón , Caracteres Sexuales , Femenino , Masculino , Humanos , Riñón/metabolismo , Nefronas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Sodio/metabolismo , Electrólitos/metabolismo
4.
Am J Physiol Cell Physiol ; 322(3): C410-C420, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080924

RESUMEN

Extracellular potassium (K+) homeostasis is achieved by a concerted effort of multiple organs and tissues. A limitation in studies of K+ homeostasis is inadequate techniques to quantify K+ fluxes into and out of organs and tissues in vivo. The goal of the present study was to test the feasibility of a novel approach to estimate K+ distribution and fluxes in vivo using stable K+ isotopes. 41K was infused as KCl into rats consuming control or K+-deficient chow (n = 4 each), 41K-to-39K ratios in plasma and red blood cells (RBCs) were measured by inductively coupled plasma mass spectrometry, and results were subjected to compartmental modeling. The plasma 41K/39K increased during 41K infusion and decreased upon infusion cessation, without altering plasma total K+ concentration ([K+], i.e., 41K + 39K). The time course of changes was analyzed with a two-compartmental model of K+ distribution and elimination. Model parameters, representing transport into and out of the intracellular pool and renal excretion, were identified in each rat, accurately predicting decreased renal K+ excretion in rats fed K+-deficient vs. control diet (P < 0.05). To estimate rate constants of K+ transport into and out of RBCs, 41K/39K were subjected to a simple model, indicating no effects of the K+-deficient diet. The findings support the feasibility of the novel stable isotope approach to quantify K+ fluxes in vivo and sets a foundation for experimental protocols using more complex models to identify heterogeneous intracellular K+ pools and to answer questions pertaining to K+ homeostatic mechanisms in vivo.


Asunto(s)
Potasio , Animales , Homeostasis , Isótopos de Potasio , Ratas
5.
Pflugers Arch ; 474(8): 853-867, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35727363

RESUMEN

Transmembrane potassium (K) gradients are key determinants of membrane potential that can modulate action potentials, control muscle contractility, and influence ion channel and transporter activity. Daily K intake is normally equal to the amount of K in the entire extracellular fluid (ECF) creating a critical challenge - how to maintain ECF [K] and membrane potential in a narrow range during feast and famine. Adaptations to maintain ECF [K] include sensing the K intake, sensing ECF [K] vs. desired set-point and activating mediators that regulate K distribution between ECF and ICF, and regulate renal K excretion. In this focused review, we discuss the basis of these adaptions, including (1) potential mechanisms for rapid feedforward signaling to kidney and muscle after a meal (before a rise in ECF [K]), (2) how skeletal muscles sense and respond to changes in ECF [K], (3) effects of K on aldosterone biosynthesis, and (4) how the kidney responds to changes in ECF [K] to modify K excretion. The concepts of sexual dimorphisms in renal K handling adaptation are introduced, and the molecular mechanisms that can account for the benefits of a K-rich diet to maintain cardiovascular health are discussed. Although the big picture of K homeostasis is becoming more clear, we also highlight significant pieces of the puzzle that remain to be solved, including knowledge gaps in our understanding of initiating signals, sensors and their connection to homeostatic adjustments of ECF [K].


Asunto(s)
Riñón , Potasio , Líquido Extracelular/metabolismo , Homeostasis/fisiología , Riñón/metabolismo , Músculo Esquelético/metabolismo , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
6.
Am J Physiol Cell Physiol ; 321(5): C897-C909, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34613843

RESUMEN

Kidneys continuously filter an enormous amount of sodium and adapt kidney Na+ reabsorption to match Na+ intake to maintain circulatory volume and electrolyte homeostasis. Males (M) respond to high-salt (HS) diet by translocating proximal tubule Na+/H+ exchanger isoform 3 (NHE3) to the base of the microvilli, reducing activated forms of the distal NaCl cotransporter (NCC) and epithelial Na+ channel (ENaC). Males (M) and females (F) on normal-salt (NS) diet present sex-specific profiles of "transporters" (cotransporters, channels, pumps, and claudins) along the nephron, e.g., F exhibit 40% lower NHE3 and 200% higher NCC abundance than M. We tested the hypothesis that adaptations to HS diet along the nephron will, likewise, exhibit sexual dimorphisms. C57BL/6J mice were fed for 15 days with 4% NaCl diet (HS) versus 0.26% NaCl diet (NS). On HS, M and F exhibited normal plasma [Na+] and [K+], similar urine volume, Na+, K+, and osmolal excretion rates normalized to body weight. In F, like M, HS lowered abundance of distal NCC, phosphorylated NCC, and cleaved (activated) forms of ENaC. The adaptations associated with achieving electrolyte homeostasis exhibit sex-dependent and independent mechanisms. Sex differences in baseline "transporters" abundance persist during HS diet, yet the fold changes during HS diet (normalized to NS) are similar along the distal nephron and collecting duct. Sex-dependent differences observed along the proximal tubule during HS show that female kidneys adapt differently from patterns reported in males, yet achieve and maintain fluid and electrolyte homeostasis.


Asunto(s)
Adaptación Fisiológica , Proteínas de Transporte de Membrana/metabolismo , Nefronas/metabolismo , Cloruro de Sodio Dietético/metabolismo , Equilibrio Hidroelectrolítico , Animales , Biomarcadores/sangre , Biomarcadores/orina , Femenino , Túbulos Renales Colectores/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosforilación , Caracteres Sexuales , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
7.
Am J Physiol Renal Physiol ; 321(1): F69-F81, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34056928

RESUMEN

The renal nephron consists of a series of distinct cell types that function in concert to maintain fluid and electrolyte balance and blood pressure. The renin-angiotensin system (RAS) is central to Na+ and volume balance. We aimed to determine how loss of angiotensin II signaling in the proximal tubule (PT), which reabsorbs the bulk of filtered Na+ and volume, impacts solute transport throughout the nephron. We hypothesized that PT renin-angiotensin system disruption would not only depress PT Na+ transporters but also impact downstream Na+ transporters. Using a mouse model in which the angiotensin type 1a receptor (AT1aR) is deleted specifically within the PT (AT1aR PTKO), we profiled the abundance of Na+ transporters, channels, and claudins along the nephron. Absence of PT AT1aR signaling was associated with lower abundance of PT transporters (Na+/H+ exchanger isoform 3, electrogenic Na+-bicarbonate cotransporter 1, and claudin 2) as well as lower abundance of downstream transporters (total and phosphorylated Na+-K+-2Cl- cotransporter, medullary Na+-K+-ATPase, phosphorylated NaCl cotransporter, and claudin 7) versus controls. However, transport activities of Na+-K+-2Cl- cotransporter and NaCl cotransporter (assessed with diuretics) were similar between groups in order to maintain electrolyte balance. Together, these results demonstrate the primary impact of angiotensin II regulation on Na+ reabsorption in the PT at baseline and the associated influence on downstream Na+ transporters, highlighting the ability of the nephron to integrate Na+ transport along the nephron to maintain homeostasis.NEW & NOTEWORTHY Our study defines a novel role for proximal tubule angiotensin receptors in regulating the abundance of Na+ transporters throughout the nephron, thereby contributing to the integrated control of fluid balance in vivo.


Asunto(s)
Angiotensina II/farmacología , Proteínas de Transporte de Membrana/metabolismo , Nefronas/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Riñón/metabolismo , Natriuresis/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo
8.
Am J Physiol Renal Physiol ; 320(6): F1080-F1092, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969697

RESUMEN

A major pathway in hypertension pathogenesis involves direct activation of ANG II type 1 (AT1) receptors in the kidney, stimulating Na+ reabsorption. AT1 receptors in tubular epithelia control expression and stimulation of Na+ transporters and channels. Recently, we found reduced blood pressure and enhanced natriuresis in mice with cell-specific deletion of AT1 receptors in smooth muscle (SMKO mice). Although impaired vasoconstriction and preserved renal blood flow might contribute to exaggerated urinary Na+ excretion in SMKO mice, we considered whether alterations in Na+ transporter expression might also play a role; therefore, we carried out proteomic analysis of key Na+ transporters and associated proteins. Here, we show that levels of Na+-K+-2Cl- cotransporter isoform 2 (NKCC2) and Na+/H+ exchanger isoform 3 (NHE3) are reduced at baseline in SMKO mice, accompanied by attenuated natriuretic and diuretic responses to furosemide. During ANG II hypertension, we found widespread remodeling of transporter expression in wild-type mice with significant increases in the levels of total NaCl cotransporter, phosphorylated NaCl cotransporter (Ser71), and phosphorylated NKCC2, along with the cleaved, activated forms of the α- and γ-epithelial Na+ channel. However, the increases in α- and γ-epithelial Na+ channel with ANG II were substantially attenuated in SMKO mice. This was accompanied by a reduced natriuretic response to amiloride. Thus, enhanced urinary Na+ excretion observed after cell-specific deletion of AT1 receptors from smooth muscle cells is associated with altered Na+ transporter abundance across epithelia in multiple nephron segments. These findings suggest a system of vascular-epithelial in the kidney, modulating the expression of Na+ transporters and contributing to the regulation of pressure natriuresis.NEW & NOTEWORTHY The use of drugs to block the renin-angiotensin system to reduce blood pressure is common. However, the precise mechanism for how these medications control blood pressure is incompletely understood. Here, we show that mice lacking angiotensin receptors specifically in smooth muscle cells lead to alternation in tubular transporter amount and function. Thus, demonstrating the importance of vascular-tubular cross talk in the control of blood pressure.


Asunto(s)
Angiotensina II/farmacología , Células Epiteliales/metabolismo , Riñón/irrigación sanguínea , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Amilorida/farmacología , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Femenino , Furosemida/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes , Hipertensión/inducido químicamente , Proteínas Luminiscentes , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Receptor de Angiotensina Tipo 1/genética , Sodio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Proteína Fluorescente Roja
9.
J Am Soc Nephrol ; 31(4): 783-798, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086277

RESUMEN

BACKGROUND: Increased nerve activity causes hypertension and kidney disease. Recent studies suggest that renal denervation reduces BP in patients with hypertension. Renal NE release is regulated by prejunctional α2A-adrenoceptors on sympathetic nerves, and α2A-adrenoceptors act as autoreceptors by binding endogenous NE to inhibit its own release. However, the role of α2A-adrenoceptors in the pathogenesis of hypertensive kidney disease is unknown. METHODS: We investigated effects of α2A-adrenoceptor-regulated renal NE release on the development of angiotensin II-dependent hypertension and kidney disease. In uninephrectomized wild-type and α2A-adrenoceptor-knockout mice, we induced hypertensive kidney disease by infusing AngII for 28 days. RESULTS: Urinary NE excretion and BP did not differ between normotensive α2A-adrenoceptor-knockout mice and wild-type mice at baseline. However, NE excretion increased during AngII treatment, with the knockout mice displaying NE levels that were significantly higher than those of wild-type mice. Accordingly, the α2A-adrenoceptor-knockout mice exhibited a systolic BP increase, which was about 40 mm Hg higher than that found in wild-type mice, and more extensive kidney damage. In isolated kidneys, AngII-enhanced renal nerve stimulation induced NE release and pressor responses to a greater extent in kidneys from α2A-adrenoceptor-knockout mice. Activation of specific sodium transporters accompanied the exaggerated hypertensive BP response in α2A-adrenoceptor-deficient kidneys. These effects depend on renal nerves, as demonstrated by reduced severity of AngII-mediated hypertension and improved kidney function observed in α2A-adrenoceptor-knockout mice after renal denervation. CONCLUSIONS: Our findings reveal a protective role of prejunctional inhibitory α2A-adrenoceptors in pathophysiologic conditions with an activated renin-angiotensin system, such as hypertensive kidney disease, and support the concept of sympatholytic therapy as a treatment.


Asunto(s)
Hipertensión Renal/etiología , Hipertensión Renal/prevención & control , Nefritis/etiología , Nefritis/prevención & control , Receptores Adrenérgicos alfa 2/fisiología , Sistema Nervioso Simpático/fisiopatología , Transmisión Sináptica/fisiología , Angiotensina II , Animales , Modelos Animales de Enfermedad , Hipertensión Renal/fisiopatología , Ratones , Ratones Noqueados , Nefritis/fisiopatología , Simpatectomía
10.
Am J Physiol Cell Physiol ; 319(4): C757-C770, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32845718

RESUMEN

Extracellular fluid (ECF) potassium concentration ([K+]) is maintained by adaptations of kidney and skeletal muscle, responses heretofore studied separately. We aimed to determine how these organ systems work in concert to preserve ECF [K+] in male C57BL/6J mice fed a K+-deficient diet (0K) versus 1% K+ diet (1K) for 10 days (n = 5-6/group). During 0K feeding, plasma [K+] fell from 4.5 to 2 mM; hindlimb muscle (gastrocnemius and soleus) lost 28 mM K+ (from 115 ± 2 to 87 ± 2 mM) and gained 27 mM Na+ (from 27 ± 0.4 to 54 ± 2 mM). Doubling of muscle tissue [Na+] was not associated with inflammation, cytokine production or hypertension as reported by others. Muscle transporter adaptations in 0K- versus 1K-fed mice, assessed by immunoblot, included decreased sodium pump α2-ß2 subunits, decreased K+-Cl- cotransporter isoform 3, and increased phosphorylated (p) Na+,K+,2Cl- cotransporter isoform 1 (NKCC1p), Ste20/SPS-1-related proline-alanine rich kinase (SPAKp), and oxidative stress-responsive kinase 1 (OSR1p) consistent with intracellular fluid (ICF) K+ loss and Na+ gain. Renal transporters' adaptations, effecting a 98% reduction in K+ excretion, included two- to threefold increased phosphorylated Na+-Cl- cotransporter (NCCp), SPAKp, and OSR1p abundance, limiting Na+ delivery to epithelial Na+ channels where Na+ reabsorption drives K+ secretion; and renal K sensor Kir 4.1 abundance fell 25%. Mass balance estimations indicate that over 10 days of 0K feeding, mice lose ~48 µmol K+ into the urine and muscle shifts ~47 µmol K+ from ICF to ECF, illustrating the importance of the concerted responses during K+ deficiency.


Asunto(s)
Adaptación Fisiológica/genética , Hipertensión/genética , Riñón/metabolismo , Potasio/metabolismo , Animales , Presión Sanguínea/genética , Canales Epiteliales de Sodio/genética , Líquido Extracelular/metabolismo , Humanos , Hipertensión/patología , Riñón/patología , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosforilación/genética , Canales de Potasio de Rectificación Interna/genética , Proteínas Serina-Treonina Quinasas/genética , Simportadores de Cloruro de Sodio-Potasio/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Simportadores/genética , Factores de Transcripción/genética , Cotransportadores de K Cl
11.
Am J Physiol Renal Physiol ; 319(3): F487-F505, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744084

RESUMEN

Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Nefronas/fisiología , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Sodio/metabolismo , Animales , Transporte Biológico , Femenino , Masculino , Ratas , Factores Sexuales , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico
12.
Am J Physiol Renal Physiol ; 317(6): F1656-F1668, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31657247

RESUMEN

Angiotensin II (ANG II) raises blood pressure partly by stimulating tubular Na+ reabsorption. The effects of ANG II on tubular Na+ transporters (i.e., channels, pumps, cotransporters, and exchangers) vary between short-term and long-term exposure. To better understand the physiological impact, we used a computational model of transport along the rat nephron to predict the effects of short- and long-term ANG II-induced transporter activation on Na+ and K+ reabsorption/secretion, and to compare measured and calculated excretion rates. Three days of ANG II infusion at 200 ng·kg-1·min-1 is nonpressor, yet stimulates transporter accumulation. The increase in abundance of Na+/H+ exchanger 3 (NHE3) or activated Na+-K+-2Cl- cotransporter-2 (NKCC2-P) predicted significant reductions in urinary Na+ excretion, yet there was no observed change in urine Na+. The lack of antinatriuresis, despite Na+ transporter accumulation, was supported by Li+ and creatinine clearance measurements, leading to the conclusion that 3-day nonpressor ANG II increases transporter abundance without proportional activation. Fourteen days of ANG II infusion at 400 ng·kg-1·min-1 raises blood pressure and increases Na+ transporter abundance along the distal nephron; proximal tubule and medullary loop transporters are decreased and urine Na+ and volume output are increased, evidence for pressure natriuresis. Simulations indicate that decreases in NHE3 and NKCC2-P contribute significantly to reducing Na+ reabsorption along the nephron and to pressure natriuresis. Our results also suggest that differential regulation of medullary (decrease) and cortical (increase) NKCC2-P is important to preserve K+ while minimizing Na+ retention during ANG II infusion. Lastly, our model indicates that accumulation of active Na+-Cl- cotransporter counteracts epithelial Na+ channel-induced urinary K+ loss.


Asunto(s)
Angiotensina II/farmacología , Proteínas de Transporte de Membrana/metabolismo , Nefronas/metabolismo , Sodio/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Simulación por Computador , Creatinina/metabolismo , Canales Epiteliales de Sodio , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Litio/orina , Masculino , Natriuresis/efectos de los fármacos , Potasio/metabolismo , Ratas , Sodio/orina , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
13.
Am J Physiol Renal Physiol ; 317(6): F1462-F1474, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31566436

RESUMEN

The goal of the present study was to investigate the functional implications of sexual dimorphism in the pattern of transporters along the rodent nephron as reported by Veiras et al. (J Am Soc Nephrol 28: 3504-3517, 2017). To do so, we developed sex-specific computational models of water and solute transport along the superficial nephrons from male and female rat kidneys. The models account for the sex differences in the abundance of apical and basolateral transporters, single nephron glomerular filtration rate, and tubular dimensions. Model simulations predict that ~70% and 60% of filtered Na+ is reabsorbed by the proximal tubule of male and female rat kidneys, respectively. The lower fractional Na+ reabsorption in female kidneys is due primarily to their smaller transport area, lower Na+/H+ exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na+ to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na+ transporters, including Na+-K+-Cl- cotransporters, Na+-Cl- cotransporters, and epithelial Na+ channels. The higher abundance of transporters accounts for the enhanced water and Na+ transport along the female, relative to male, distal nephron, resulting in similar urine excretion between the sexes. Consequently, in response to a saline load, the Na+ load delivered distally is greater in female rats than male rats, overwhelming transport capacity and resulting in higher natriuresis in female rats.


Asunto(s)
Proteínas Portadoras/metabolismo , Nefronas/metabolismo , Animales , Claudinas/metabolismo , Femenino , Tasa de Filtración Glomerular , Túbulos Renales/metabolismo , Masculino , Modelos Biológicos , Ratas , Caracteres Sexuales , Sodio/metabolismo , Sodio/orina , Canales de Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Agua/metabolismo
14.
J Am Soc Nephrol ; 34(12): 1940-1943, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902620
15.
J Am Soc Nephrol ; 29(10): 2546-2561, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30185469

RESUMEN

BACKGROUND: Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS: To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS: In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1ß, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS: These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/deficiencia , Sustitución de Aminoácidos , Angiotensina II/metabolismo , Animales , Dominio Catalítico/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/genética , Canales Epiteliales de Sodio/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Natriuresis/genética , Natriuresis/fisiología , Oligopéptidos/antagonistas & inhibidores , Oligopéptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Dominios Proteicos , Sistema Renina-Angiotensina/fisiología
16.
Physiology (Bethesda) ; 32(2): 100-111, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28202621

RESUMEN

Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K+ is only 2% of total body K+, our physiology was evolutionarily tuned for a high-K+, low-Na+ diet. We review how multiple systems interface to accomplish fine K+ balance and the consequences for health and disease.


Asunto(s)
Dieta Saludable , Homeostasis , Potasio en la Dieta/metabolismo , Potasio/metabolismo , Adaptación Fisiológica , Aldosterona/metabolismo , Animales , Sistema Cardiovascular , Ingestión de Alimentos , Humanos , Riñón/metabolismo , Potenciales de la Membrana , Músculo Esquelético/metabolismo , Sodio/metabolismo , Sodio en la Dieta
17.
Am J Physiol Renal Physiol ; 315(3): F692-F700, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846110

RESUMEN

The goal of this study is to investigate the functional implications of the sexual dimorphism in transporter patterns along the proximal tubule. To do so, we have developed sex-specific computational models of solute and water transport in the proximal convoluted tubule of the rat kidney. The models account for the sex differences in expression levels of the apical and basolateral transporters, in single-nephron glomerular filtration rate, and in tubular dimensions. Model simulations predict that 70.6 and 38.7% of the filtered volume is reabsorbed by the proximal tubule of the male and female rat kidneys, respectively. The lower fractional volume reabsorption in females can be attributed to their smaller transport area and lower aquaporin-1 expression level. The latter also results in a larger contribution of the paracellular pathway to water transport. Correspondingly similar fractions (70.9 and 39.2%) of the filtered Na+ are reabsorbed by the male and female proximal tubule models, respectively. The lower fractional Na+ reabsorption in females is due primarily to their smaller transport area and lower Na+/H+ exchanger isoform 3 and claudin-2 expression levels. Notably, unlike most Na+ transporters, whose expression levels are lower in females, Na+-glucose cotransporter 2 (SGLT2) expression levels are 2.5-fold higher in females. Model simulations suggest that the higher SGLT2 expression in females may compensate for their lower tubular transport area to achieve a hyperglycemic tolerance similar to that of males.


Asunto(s)
Agua Corporal/metabolismo , Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Reabsorción Renal , Caracteres Sexuales , Sodio/orina , Animales , Simulación por Computador , Femenino , Glucosa/metabolismo , Masculino , Ratas , Transportador 2 de Sodio-Glucosa/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Equilibrio Hidroelectrolítico
18.
Cell Physiol Biochem ; 45(4): 1551-1565, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29482189

RESUMEN

BACKGROUND/AIMS: Patients with cystic fibrosis (CF) are prone to the development of metabolic alkalosis; however, the pathogenesis of this life threatening derangement remains unknown. We hypothesized that altered acid base transport machinery in the kidney collecting duct underlies the mechanism of impaired bicarbonate elimination in the CF kidney. METHODS: Balance studies in metabolic cages were performed in WT and CFTR knockout (CF) mice with the intestinal rescue in response to bicarbonate loading or salt restriction, and the expression levels and cellular distribution of acid base and electrolyte transporters in the proximal tubule, collecting duct and small intestine were examined by western blots, northern blots and/or immunofluorescence labeling. RESULTS: Baseline parameters, including acid-base and systemic vascular volume status were comparable in WT and CF mice, as determined by blood gas, kidney renin expression and urine chloride excretion. Compared with WT animals, CF mice demonstrated a significantly higher serum HCO3- concentration (22.63 in WT vs. 26.83 mEq/l in CF mice; n=4, p=0.013) and serum pH (7.33 in WT vs. 7.42 in CF mice; n=4, p=0.00792) and exhibited impaired kidney HCO3- excretion (urine pH 8.10 in WT vs. 7.35 in CF mice; n=7, p=0.00990) following a 3-day oral bicarbonate load. When subjected to salt restriction, CF mice developed a significantly higher serum HCO3- concentration vs. WT animals (29.26 mEq/L in CF mice vs. 26.72 in WT; n=5, p=0.0291). Immunofluorescence labeling demonstrated a profound reduction in the apical expression of the Cl-/HCO3- exchanger pendrin in cortical collecting duct cells and western and northern blots indicated diminished plasma membrane abundance and mRNA expression of pendrin in CF kidneys. CONCLUSIONS: We propose that patients with cystic fibrosis are prone to the development of metabolic alkalosis secondary to the inactivation of the bicarbonate secreting transporter pendrin, specifically during volume depletion, which is a common occurrence in CF patients.


Asunto(s)
Alcalosis/patología , Proteínas de Transporte de Anión/metabolismo , Fibrosis Quística/patología , Túbulos Renales Proximales/metabolismo , Alcalosis/complicaciones , Animales , Proteínas de Transporte de Anión/genética , Bicarbonatos/sangre , Bicarbonatos/farmacología , Análisis de los Gases de la Sangre , Cloruros/orina , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación hacia Abajo/efectos de los fármacos , Concentración de Iones de Hidrógeno , Intestino Delgado/metabolismo , Túbulos Renales Proximales/patología , Ratones , Ratones Noqueados , Microscopía Fluorescente , ARN Mensajero/metabolismo , Renina/metabolismo , Cloruro de Sodio/farmacología , Transportadores de Sulfato
19.
Curr Opin Nephrol Hypertens ; 27(1): 1-7, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29045337

RESUMEN

PURPOSE OF REVIEW: The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of hypertension. Homeostatic actions of the RAS, such as increasing blood pressure (BP) and vasoconstriction, are mediated via type 1 (AT1) receptors for angiotensin II. All components of the RAS are present in the renal proximal tubule, which reabsorbs the bulk of the glomerular filtrate, making this segment of the nephron a location of great interest for solute handling under RAS influence. This review highlights recent studies that illustrate the key role of renal proximal tubule AT1 receptors in BP regulation. RECENT FINDINGS: A variety of investigative approaches have demonstrated that angiotensin II signaling via AT1a receptors, specifically in the renal proximal tubule, is a major regulator of BP and sodium homeostasis. Reduction of proximal tubule AT1a receptors led to lower BPs, whereas overexpression generally caused increased BPs. SUMMARY: AT1a receptors in the proximal tubule are critical to the regulation of BP by the kidney and the RAS. The pattern of BP modulation is associated with alterations in sodium transporters. As a key site for sodium homeostasis, the renal proximal tubule could hence be a potential target in the treatment of hypertension.


Asunto(s)
Presión Sanguínea , Túbulos Renales Proximales/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Homeostasis , Humanos , Receptor de Angiotensina Tipo 1/fisiología , Transducción de Señal , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA