Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165178

RESUMEN

Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.


Asunto(s)
Ecosistema , Ríos , Carbono/metabolismo , Luz , Estaciones del Año , Temperatura , Tiempo (Meteorología)
2.
Glob Chang Biol ; 28(15): 4633-4654, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35543027

RESUMEN

While tropical cyclone regimes are shifting with climate change, the mechanisms underpinning the resistance (ability to withstand disturbance-induced change) and resilience (capacity to return to pre-disturbance reference) of tropical forest litterfall to cyclones remain largely unexplored pantropically. Single-site studies in Australia and Hawaii suggest that litterfall on low-phosphorus (P) soils is more resistant and less resilient to cyclones. We conducted a meta-analysis to investigate the pantropical importance of total soil P in mediating forest litterfall resistance and resilience to 22 tropical cyclones. We evaluated cyclone-induced and post-cyclone litterfall mass (g/m2 /day), and P and nitrogen (N) fluxes (mg/m2 /day) and concentrations (mg/g), all indicators of ecosystem function and essential for nutrient cycling. Across 73 case studies in Australia, Guadeloupe, Hawaii, Mexico, Puerto Rico, and Taiwan, total litterfall mass flux increased from ~2.5 ± 0.3 to 22.5 ± 3 g/m2 /day due to cyclones, with large variation among studies. Litterfall P and N fluxes post-cyclone represented ~5% and 10% of the average annual fluxes, respectively. Post-cyclone leaf litterfall N and P concentrations were 21.6 ± 1.2% and 58.6 ± 2.3% higher than pre-cyclone means. Mixed-effects models determined that soil P negatively moderated the pantropical litterfall resistance to cyclones, with a 100 mg P/kg increase in soil P corresponding to a 32% to 38% decrease in resistance. Based on 33% of the resistance case studies, total litterfall mass flux reached pre-disturbance levels within one-year post-disturbance. A GAMM indicated that soil P, gale wind duration and time post-cyclone jointly moderate the short-term resilience of total litterfall, with the nature of the relationship between resilience and soil P contingent on time and wind duration. Across pantropical forests observed to date, our results indicate that litterfall resistance and resilience in the face of intensifying cyclones will be partially determined by total soil P.


Asunto(s)
Tormentas Ciclónicas , Fósforo , Ecosistema , Bosques , Suelo , Árboles
3.
Glob Chang Biol ; 28(24): 7270-7285, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36176238

RESUMEN

Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.


Asunto(s)
Nitratos , Óxido Nitroso , Óxido Nitroso/análisis , Nitratos/análisis , Materia Orgánica Disuelta , Monitoreo del Ambiente , Ríos
4.
Glob Chang Biol ; 28(1): 98-114, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706120

RESUMEN

Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Carbono , Ecosistema , Nitrógeno/análisis
5.
Environ Sci Technol ; 56(3): 2009-2020, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007420

RESUMEN

Anthropogenic land use has increased nutrient concentrations and altered dissolved organic matter (DOM) character and its bioavailability. Despite widespread recognition that DOM character and its reactivity can vary temporally, the relative influence of land use and stream order on DOM characteristics is poorly understood across seasons and the entire flow regime. We examined DOM character and 28-day bioavailable dissolved organic carbon (BDOC) across a river network to determine the relative roles of land use and stream order in driving variability in DOM character and bioavailability throughout the year. DOM in 1st-order streams was distinct from higher stream orders with lower DOC concentrations, less aromatic (specific ultraviolet absorbance at 254 nm (SUVA254)), more autochthonous (fluorescence index), and more recently produced (ß/α) DOM. Across all months, variability in DOM character was primarily explained by land use, rather than stream order or season. Land use and stream order explained the most DOM variation in transitional and winter months and the least during dry months. BDOC was greater in watersheds with less aromatic (SUVA254) and more recent allochthonous DOM (ß/α) and more development and impervious surface. With continued development, the bioavailability of DOM in the smallest and most impacted watersheds is expected to increase.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Estaciones del Año
6.
Environ Sci Technol ; 55(12): 8422-8431, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34018725

RESUMEN

Inland waters are significant sources of nitrous oxide (N2O), a powerful greenhouse gas. However, considerable uncertainty exists in the estimates of N2O efflux from global inland waters due to a lack of direct measurements in urban inland waters, which are generally characterized by high carbon and nitrogen concentrations and low carbon-to-nitrogen ratios. Herein, we present direct measurements of N2O concentrations and fluxes in lakes and rivers of Beijing, China, during 2018-2020. N2O concentrations and fluxes in the waters of Beijing exceeded previous estimates of global rivers due to the high carbon and nutrient concentrations and high aquatic productivity. In contrast, the N2O emission factor (N2O-N/DIN, median 0.0005) was lower than global medians and the N2O yield (ΔN2O/(ΔN2O + ΔN2), average 1.6%) was higher than those typically observed in rivers and streams. The positive relationship between N2O emissions and denitrifying bacteria as well as the Michaelis-Menten relationship between N2O emissions and NO3--N concentrations suggested that bacteria control the net production of N2O in waters of Beijing with N saturation, leading to a low N2O emission factor. However, low carbon-to-nitrogen ratios are beneficial for N2O accumulation during denitrification, resulting in high N2O yields. This study demonstrates the significant N2O emissions and their distinctive patterns and controls in urban inland waters and suggests that N2O emission estimates based on nitrogen loads and simple emission factor values are not appropriate for urban inland water systems.


Asunto(s)
Óxido Nitroso , Ríos , Beijing , China , Lagos , Óxido Nitroso/análisis
7.
Ecotoxicology ; 29(8): 1207-1220, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31643013

RESUMEN

At a "clean air" trade winds site in northeastern Puerto Rico, we found an apparent paradox: atmospheric total mercury (THg) deposition was highest of any site in the USA Mercury Deposition Network, but assimilation into the local food web was quite low. Avian blood THg concentrations (n = 31, from eight species in five foraging guilds) ranged widely from 0.2 to 32 ng g-1 (median of 4.3 ng g-1). Within this population, THg was significantly greater at a low-elevation site near a wetland compared to an upland montane site, even when the comparison was limited to a single species. Overall, however, THg concentrations were approximately an order of magnitude lower than comparable populations in the continental U.S. In surface soil and sediment, potential rates of demethylation were 3 to 9-fold greater than those for Hg(II)-methylation (based on six radiotracer amendment incubations), but rates of change of ambient MeHg pools showed a slight net positive Hg(II)-methylation. Thus, the resolution of the paradox is that MeHg degradation approximately keeps pace with MeHg production in this landscape. Further, any net production of MeHg is subject to frequent flushing by high rainfall on chronically wet soils. The interplay of these microbial processes and hydrology appears to shield the local food web from adverse effects of high atmospheric mercury loading. This scenario may play out in other humid tropical ecosystems as well, but it is difficult to evaluate because coordinated studies of Hg deposition, methylation, and trophic uptake have not been conducted at other tropical sites.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Mercurio/análisis , Puerto Rico
8.
Ecol Appl ; 29(2): e01839, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578700

RESUMEN

Nutrient inputs to surface waters are particularly varied in urban areas, due to multiple nutrient sources and complex hydrologic pathways. Because of their close proximity to coastal waters, nutrient delivery from many urban areas can have profound impacts on coastal ecology. Relatively little is known about the temporal and spatial variability in stoichiometry of inorganic nutrients such as dissolved silica, nitrogen, and phosphorus (Si, N, and P) and dissolved organic matter in tropical urban environments. We examined nutrient stoichiometry of both inorganic nutrients and organic matter in an urban watershed in Puerto Rico served by municipal sanitary sewers and compared it to two nearby forested catchments using samples collected weekly from each river for 6 yr. Urbanization caused large increases in the concentration and flux of nitrogen and phosphorus (2- to 50-fold), but surprisingly little change in N:P ratio. Concentrations of almost all major ions and dissolved silica were also significantly higher in the urban river than the wildland rivers. Yield of dissolved organic carbon (DOC) was not increased dramatically by urbanization, but the composition of dissolved organic matter shifted toward N-rich material, with a larger increase in dissolved organic nitrogen (DON) than DOC. The molar ratio of DOC:DON was about 40 in rivers draining forested catchments but was only 10 in the urban river. Inclusion of Si in the assessment of urbanization's impacts reveals a large shift in the stoichiometry (Si:N and Si:P) of nutrient inputs. Because both Si concentrations and watershed exports are high in streams and rivers from many humid tropical catchments with siliceous bedrock, even the large increases in N and P exported from urban catchments result in delivery of Si, N, and P to coastal waters in stoichiometric ratios that are well in excess of the Si requirements of marine diatoms. Our data suggest that dissolved Si, often neglected in watershed biogeochemistry, should be included in studies of urban as well as less developed watersheds due to its potential significance for marine and lacustrine productivity.


Asunto(s)
Nutrientes , Ríos , Monitoreo del Ambiente , Nitrógeno , Puerto Rico
9.
Environ Sci Technol ; 52(22): 13155-13165, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30379543

RESUMEN

In many temperate forested watersheds, hydrologic nitrogen export has declined substantially in recent decades, and many of these watersheds show enduring effects from historic acid deposition. A watershed acid remediation experiment in New Hampshire reversed many of these legacy effects of acid deposition and also increased watershed nitrogen export, suggesting that these two phenomena may be coupled. Here we examine stream nitrate dynamics in this watershed acid remediation experiment for indicators of nitrogen saturation in the terrestrial and aquatic ecosystems. Post-treatment, the (positive) slope of the relationship between nitrate concentration and discharge increased by a median of 82% ( p = 0.004). This resulted in greater flushing of nitrate during storm events, a key indicator of early stage nitrogen saturation. Hysteretic behavior of the concentration-discharge relationship indicated that the mobilization of soil nitrate pools was responsible for this increased flushing. In contrast to this evidence for nitrogen saturation in the terrestrial ecosystem, we found that nitrogen uptake increased, post-treatment, in the aquatic ecosystem, substantially attenuating growing-season nitrate flux by up to 71.1% ( p = 0.025). These results suggest that, as forests slowly recover from acid precipitation, terrestrial, and aquatic ecosystem nitrogen balance may be substantially altered.


Asunto(s)
Lluvia Ácida , Ecosistema , New Hampshire , Nitratos , Nitrógeno , Ríos
10.
Ecology ; 98(12): 3044-3055, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28881008

RESUMEN

Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.


Asunto(s)
Cadena Alimentaria , Ciclo del Nitrógeno , Nitrógeno/análisis , Ríos/química , Animales , Nitrógeno/metabolismo , Isótopos de Nitrógeno
11.
Glob Chang Biol ; 23(4): 1610-1625, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27808458

RESUMEN

Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year.


Asunto(s)
Cambio Climático , Estaciones del Año , Ecosistema , New Hampshire , Nieve , Temperatura
12.
Environ Monit Assess ; 189(8): 406, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28730580

RESUMEN

Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.


Asunto(s)
ADN Mitocondrial , Monitoreo del Ambiente , Ríos/microbiología , Contaminación del Agua/análisis , Agricultura , Animales , Bacterias , Bovinos , Perros , Heces/microbiología , Marcadores Genéticos , Agua/análisis , Microbiología del Agua , Calidad del Agua
13.
Ambio ; 44(3): 178-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25037589

RESUMEN

Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Ciclo del Nitrógeno , Cambio Climático
14.
Environ Sci Technol ; 48(9): 4681-9, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24669928

RESUMEN

Previous reports suggest variable trends in recovery from acidification in northeastern U.S. surface waters in response to the Clean Air Act Amendments. Here we analyze recent trends in emissions, wet deposition, and lake chemistry using long-term data from a variety of lakes in the Adirondack Mountains and New England. Sulfate concentration in wet deposition declined by more than 40% in the 2000s and sulfate concentration in lakes declined at a greater rate from 2002 to 2010 than during the 1980s or 1990s (-3.27 µeq L(-1)year(-1) as compared to -1.26 µeq L(-1)year(-1)). During the 2000s, nitrate concentration in wet deposition declined by more than 50% and nitrate concentration in lakes, which had no linear trend prior to 2000, declined at a rate of -0.05 µeq L(-1)year(-1). Base cation concentrations, which decreased during the 1990s (-1.5 µeq L(-1) year(-1)), have stabilized in New England lakes. Although total aluminum concentrations increased since 1999 (2.57 µg L(-1) year(-1)), there was a shift to nontoxic, organic aluminum. Despite this recent acceleration in recovery in multiple variables, both ANC and pH continue to have variable trends. This may be due in part to variable trajectories in the concentrations of base cations and dissolved organic carbon among our study lakes.


Asunto(s)
Ácidos/química , Aluminio/análisis , Agua Dulce/química , Nitratos/análisis , Sulfatos/análisis , Cationes , Lagos , New England , New York
15.
Nature ; 452(7184): 202-5, 2008 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-18337819

RESUMEN

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Asunto(s)
Ecosistema , Actividades Humanas , Nitratos/análisis , Nitratos/metabolismo , Nitritos/análisis , Nitritos/metabolismo , Ríos/química , Agricultura , Bacterias/metabolismo , Simulación por Computador , Geografía , Nitrógeno/análisis , Nitrógeno/metabolismo , Isótopos de Nitrógeno , Plantas/metabolismo , Urbanización
16.
Proc Natl Acad Sci U S A ; 108(1): 214-9, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173258

RESUMEN

Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an important determinant of how much N(2)O is produced by river networks, but little is known about the N(2)O yield in flowing waters. Here, we present the results of whole-stream (15)N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N(2)O at rates that increase with stream water nitrate (NO(3)(-)) concentrations, but that <1% of denitrified N is converted to N(2)O. Unlike some previous studies, we found no relationship between the N(2)O yield and stream water NO(3)(-). We suggest that increased stream NO(3)(-) loading stimulates denitrification and concomitant N(2)O production, but does not increase the N(2)O yield. In our study, most streams were sources of N(2)O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y(-1) of anthropogenic N inputs to N(2)O in river networks, equivalent to 10% of the global anthropogenic N(2)O emission rate. This estimate of stream and river N(2)O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Asunto(s)
Desnitrificación/fisiología , Monitoreo del Ambiente/estadística & datos numéricos , Efecto Invernadero , Óxido Nitroso/metabolismo , Ríos/química , Monitoreo del Ambiente/métodos , Espectrometría de Masas , Modelos Teóricos , Isótopos de Nitrógeno/análisis , Estados Unidos
17.
J Environ Qual ; 43(6): 2053-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25602222

RESUMEN

Increased urbanization in many tropical regions has led to an increase in centralized treatment of sewage effluents. Research regarding the effects of these wastewater treatment plants (WWTPs) on the ecology of tropical streams is sparse, so we examined the effects of WWTPs on stream water quality on the Caribbean island of Puerto Rico. Nutrient concentrations, discharge, dissolved oxygen (DO), biochemical oxygen demand (CBOD), and specific UV absorbance (SUVA) at 254 nm were measured upstream from the WWTP effluent, at the WWTP effluent, and below the WWTP effluent. All parameters measured (except DO) were significantly affected by discharge of WWTP effluent to the stream. The values of SUVA at 254 nm were typically lower (<2.5 m mg L) in WWTP effluents than those measured upstream of the WWTP, suggesting that WWTP effluents are contributing labile carbon fractions to receiving streams, thus changing the chemical composition of dissolved organic carbon in downstream reaches. Effluents from WWTP contributed on average 24% to the stream flow at our tropical streams. More than 40% of the nutrient loads in receiving streams came from WWTP effluents, with the effects on NO-N and PO-P loads being the greatest. The effect of WWTPs on nutrient loads was significantly larger than the effect of flow due to the elevated nutrient concentrations in treated effluents. Our results demonstrate that inputs from WWTPs to streams contribute substantially to changes in water quality, potentially affecting downstream ecosystems. Our findings highlight the need to establish nutrient criteria for tropical streams to minimize degradation of downstream water quality of the receiving streams.

18.
Nat Commun ; 15(1): 5430, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926366

RESUMEN

Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.

19.
PLoS One ; 18(3): e0256976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36888624

RESUMEN

The forests of central Europe have undergone remarkable transitions in the past 40 years as air quality has improved dramatically. Retrospective analysis of Norway spruce (Picea abies) tree rings in the Czech Republic shows that air pollution (e.g. SO2 concentrations, high acidic deposition to the forest canopy) plays a dominant role in driving forest health. Extensive soil acidification occurred in the highly polluted "Black Triangle" in Central Europe, and upper mineral soils are still acidified. In contrast, acidic atmospheric deposition declined by 80% and atmospheric SO2 concentration by 90% between the late 1980s and 2010s. In this study we oserved that annual tree ring width (TRW) declined in the 1970s and subsequently recovered in the 1990s, tracking SO2 concentrations closely. Furthermore, recovery of TRW was similar in unlimed and limed stands. Despite large increases in soil base saturation, as well as soil pH, as a result of repeated liming starting in 1981, TRW growth was similar in limed and unlimed plots. TRW recovery was interrupted in 1996 when highly acidic rime (originating from more pronounced decline of alkaline dust than SO2 from local power plants) injured the spruce canopy, but recovered soon to the pre-episode growth. Across the long-term site history, changes in soil chemistry (pH, base saturation, Bc/Al soil solution ratio) cannot explain observed changes in TRW at the two study sites where we tracked soil chemistry. Instead, statistically significant recovery in TRW is linked to the trajectory of annual SO2 concentrations or sulfur deposition at all three stands.


Asunto(s)
Contaminación del Aire , Picea , Suelo , Estudios Retrospectivos , Bosques , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA