Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurosci ; 43(8): 1348-1359, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36657972

RESUMEN

Prior evidence indicates that the infralimbic cortex (IL) mediates the ongoing inhibition of cocaine seeking following self-administration and extinction training in rats, specifically through projections to the nucleus accumbens shell (NAshell). Our own data indicate that IL activity immediately following an unreinforced lever press is critical for encoding the extinction contingencies in such procedures. Whether extinction encoding requires activity in the IL exclusively or also activity in its outputs, such as those to the NAshell and amygdala, is unknown. To address this issue, we used a closed-loop optogenetic approach in female and male Sprague Dawley rats to silence IL-NAshell or IL-amygdala activity following an unreinforced lever press during extinction training. Optical illumination (20 s) was given either immediately after a lever press or following a 20 s delay. IL-NAshell inhibition immediately following an unreinforced lever press increased lever pressing during extinction training and impaired retention of extinction learning, as assessed during subsequent extinction sessions without optical inhibition. Likewise, IL-amygdala inhibition given in the same manner impaired extinction retention during sessions without inhibition. Control experiments indicate that critical encoding of extinction learning does not require activity in these pathways beyond the initial 20 s post-lever press period, as delayed IL-NAshell and IL-amygdala inhibition had no effect on extinction learning. These results suggest that a larger network extending from the IL to the NAshell and amygdala is involved in encoding extinction contingencies following cocaine self-administration.SIGNIFICANCE STATEMENT Infralimbic cortex (IL) activity following an unreinforced lever press during extinction learning encodes the extinction of cocaine-seeking behavior. However, the larger circuitry controlling such encoding has not been investigated. Using closed-loop optogenetic pathway targeting, we found that inhibition of IL projections to the nucleus accumbens shell and to the amygdala impaired the extinction of cocaine seeking. Importantly, these effects were only observed when activity was disrupted during the first 20 s post-lever press and not when given following a 20 s delay. These findings suggest that successful cocaine extinction encoding requires activity across a larger circuit beyond simply inputs to the IL.


Asunto(s)
Cocaína , Núcleo Accumbens , Femenino , Ratas , Masculino , Animales , Núcleo Accumbens/fisiología , Cocaína/farmacología , Ratas Sprague-Dawley , Extinción Psicológica/fisiología , Amígdala del Cerebelo , Autoadministración
2.
J Immunol ; 207(5): 1344-1356, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389625

RESUMEN

CD8+ T cells can potentiate long-lived immunity against COVID-19. We screened longitudinally-sampled convalescent human donors against SARS-CoV-2 tetramers and identified a participant with an immunodominant response against residues 322 to 311 of nucleocapsid (Nuc322-331), a peptide conserved in all variants of concern reported to date. We conducted 38-parameter cytometry by time of flight on tetramer-identified Nuc322-331-specific CD8+ T cells and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins, and took 32 serological measurements. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and Ab pillars of adaptive immunity. Over the approximately six month period of convalescence monitored, we observed a slow and progressive decrease in the activation state and polyfunctionality of Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph node-homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence into a state characteristic of long-lived, self-renewing memory.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Convalecencia , SARS-CoV-2/inmunología , Linfocitos T CD8-positivos/patología , Humanos , Estudios Longitudinales
3.
Mov Disord ; 30(14): 1901-1911, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26573698

RESUMEN

BACKGROUND: ABT-126 is a novel, safe, and well-tolerated α7 nicotinic receptor agonist in a Phase 2 Alzheimer's disease study. We tested the antidyskinetic effect of ABT-126 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys with moderate and more severe nigrostriatal damage. METHODS: Monkeys (n = 21, set 1) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1-2×. When parkinsonian, they were gavaged with levodopa (10 mg/kg)/carbidopa (2.5 mg/kg) twice daily and dyskinesias rated. They were then given nicotine in drinking water (n = 5), or treated with vehicle (n = 6) or ABT-126 (n = 10) twice daily orally 30 min before levodopa. Set 1 was then re-lesioned 1 to 2 times for a total of 3 to 4 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. The antidyskinetic effect of ABT-126, nicotine, and the ß2* nicotinic receptor agonist ABT-894 was re-assessed. Another group of monkeys (n = 23, set 2) were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only 1× to 2×. They were treated with levodopa/carbidopa, administered the α7 agonist ABT-107 (n = 6), ABT-894 (n = 6), nicotine (n = 5), or vehicle (n = 6) and dyskinesias evaluated. All monkeys were euthanized and the dopamine transporter measured. RESULTS: With moderate nigrostriatal damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 1×-2×), ABT-126 dose-dependently decreased dyskinesias (∼60%), with similar results seen with ABT-894 (∼60%) or nicotine (∼60%). With more severe damage (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 3-4×), ABT-126 and nicotine reduced dyskinesias, but ABT-894 did not. The dopamine transporter was 41% and 8.9% of control, with moderate and severe nigrostriatal damage, respectively. No drug modified parkinsonism. CONCLUSION: The novel α7 nicotinic receptor drug ABT-126 reduced dyskinesias in monkeys with both moderate and severe nigrostriatal damage. ABT-126 may be useful to reduce dyskinesias in both early- and later-stage Parkinson's disease.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Agonistas Nicotínicos/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Sustancia Negra/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antiparkinsonianos/uso terapéutico , Discinesia Inducida por Medicamentos/patología , Femenino , Levodopa/uso terapéutico , Masculino , Agonistas Nicotínicos/farmacología , Trastornos Parkinsonianos/patología , Saimiri
4.
J Pharmacol Exp Ther ; 351(1): 25-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25034405

RESUMEN

Previous studies in Parkinsonian rats and monkeys have shown that ß2-selective nicotinic acetylcholine receptor (nAChR) agonists reduce l-Dopa-induced dyskinesias (LIDs), a serious complication of l-Dopa therapy for Parkinson's disease. Since rodent studies also suggested an involvement of α7 nAChRs in LIDs, we tested the effect of the potent, selective α7 agonist ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole]. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned monkeys were gavaged with l-Dopa/carbidopa (10 and 2.5 mg/kg, respectively) twice daily, which resulted in stable LIDs. A dose-response study (0.03-1.0 mg/kg) showed that oral ABT-107 decreased LIDs by 40-60%. LIDs returned to control levels only after a 6-week ABT-107 washout, suggesting that long-term molecular changes were involved. Subsequent readministration of ABT-107 decreased LIDs by 50-60%, indicating that tolerance did not develop. ABT-107 had no effect on Parkinsonism or cognitive performance. We next tested ABT-107 together with the ß2 agonist ABT-894 [(3-(5,6-dichloro-pyridin-3-yl)-1(S),5 (S)-3,6-diazabicyclo[3.2.0]heptane], previously shown to reduce LIDs in Parkinsonian monkeys. In one study, the monkeys were first given oral ABT-894 (0.01 mg/kg), which maximally decreased LIDs by 50-60%; they were then also treated with 0.1 mg/kg ABT-107, a dose that maximally reduced LIDs. The effect of combined treatment on LIDs was similar to that with either drug alone. Comparable results were observed in a group of monkeys first treated with ABT-107 and then also given ABT-894. Thus, α7 and ß2 nAChR-selective drugs may function via a final common mechanism to reduce LIDs. The present results suggest that drugs targeting either α7 or ß2 nAChRs may be useful as antidyskinetic agents in Parkinson's disease.


Asunto(s)
Discinesia Inducida por Medicamentos/tratamiento farmacológico , Indoles/uso terapéutico , Intoxicación por MPTP/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Quinuclidinas/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Antiparkinsonianos/efectos adversos , Femenino , Indoles/farmacología , Levodopa/efectos adversos , Masculino , Agonistas Nicotínicos/farmacología , Quinuclidinas/farmacología , Saimiri
5.
Mov Disord ; 29(4): 508-17, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515328

RESUMEN

Levodopa-induced dyskinesias (LIDs) are a serious complication of levodopa therapy for Parkinson's disease for which there is little treatment. Accumulating evidence shows that nicotinic acetylcholine receptor (nAChR) drugs decrease LIDs in parkinsonian animals. Here, we examined the effect of two ß2 nAChR agonists, ABT-089 and ABT-894, that previously were approved for phase 2 clinical trials for other indications. Two sets of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys were administered levodopa/carbidopa (10 mg/kg and 2.5 mg/kg, respectively) twice daily 5 days a week until they were stably dyskinetic. Each set had a vehicle-treated group, an nAChR agonist-treated group, and a nicotine-treated group as a positive control. Set A monkeys had previously received other nAChR drugs (nAChR drug-primed), whereas Set B monkeys were initially nAChR drug-naive. Both sets were administered the partial agonist ABT-089 (range, 0.01-1.0 mg/kg) orally 5 days a week twice daily 30 minutes before levodopa with each dose given for 1 to 5 weeks. ABT-089 decreased LIDs by 30% to 50% compared with vehicle-treated monkeys. Nicotine reduced LIDs by 70% in a parallel group. After 4 weeks of washout, the effect of the full agonist ABT-894 (range, 0.0001-0.10 mg/kg) was assessed on LIDs in Set A and Set B. ABT-894 reduced LIDs by 70%, similar to nicotine. Both drugs acted equally well at α4ß2* and α6ß2* nAChRs; however, ABT-089 was 30 to 60 times less potent than ABT-894. Tolerance did not develop for the time periods tested (range, 3-4 months). The nAChR drugs did not worsen parkinsonism or cognitive ability. Emesis, a common problem with nAChR drugs, was not observed. ABT-894 and ABT-089 appear to be good candidate nAChR drugs for the management of LIDs in Parkinson's disease.


Asunto(s)
Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Intoxicación por MPTP/tratamiento farmacológico , Agonistas Nicotínicos/uso terapéutico , Piridinas/uso terapéutico , Pirrolidinas/uso terapéutico , Animales , Antiparkinsonianos/uso terapéutico , Femenino , Levodopa/uso terapéutico , Masculino , Saimiri , Resultado del Tratamiento
6.
Artículo en Inglés | MEDLINE | ID: mdl-38499719

RESUMEN

Evidence indicates that the anterior (aIC), but not posterior (pIC), insular cortex promotes cued reinstatement of cocaine seeking after extinction in rats. It is unknown whether these subregions also regulate heroin seeking and whether such involvement depends on prior extinction learning. To address these questions, we used baclofen and muscimol (BM) to inactivate the aIC or pIC bilaterally during a seeking test after extinction or prolonged withdrawal from heroin. Male Sprague-Dawley rats in the extinction groups underwent 10+ days of heroin self-administration, followed by 6+ days of extinction sessions, and subsequent cued or heroin-primed reinstatement. Results indicate that aIC inactivation increased cued reinstatement of heroin seeking after extinction, whereas pIC inactivation prevented cued reinstatement. To determine whether these effects were extinction-dependent, we conducted a subsequent study using both sexes with prolonged withdrawal. Male and female rats in the withdrawal groups underwent 10+ days of heroin self-administration, followed by cued seeking tests after 1 and 14 days of homecage withdrawal to measure incubation of heroin craving. In this case, the findings indicate that aIC inactivation had no effect on incubation of heroin craving after withdrawal in either sex, whereas pIC inactivation decreased heroin craving only in males. These findings suggest that the aIC and pIC have opposing roles in suppressing vs promoting cued heroin seeking after extinction and that these roles are distinct from those in cocaine seeking. Moreover, the incubation of craving results suggest that new contingency learning is necessary to recruit the aIC in cued heroin seeking.

7.
Psychol Sport Exerc ; 75: 102697, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960347

RESUMEN

Elite athletes often make large personal sacrifices to pursue excellence, but there is insufficient support for them when they leave elite sport. Identity loss is central to athletes' transition trajectories and hence the management of identity change is a crucial area for support. The More Than Sport (MTS) program is a novel digital intervention that aims to provide this support-helping athletes manage identity change in the process of leaving elite sport. The present research aims to study elite athletes' experiences with the MTS program and their perceptions of its usefulness in managing the transition away from elite sport. We undertook a qualitative study with athletes (N = 25) from three countries (the United Kingdom, Australia and Belgium) using reflexive thematic analysis to explore their experiences of the program and their feedback on program content. We identified three key themes and eight subthemes. The first key theme was Value of the Program, and this was underpinned by four sub-themes that centred on Program importance and novelty, how Positive and confronting experiences afford insight, the Value of developing shared understanding, and Realising the value of social groups. The second key theme was Engagement with Program Elements and here participants commented on Program content and Delivery format. The final key theme was Time and Place for Identity Management Programs which included the sub-themes of Optimal timing and Additional program beneficiaries. Overall, the results highlight the value of MTS specifically, and identity management efforts more broadly, to help elite athletes adjust successfully to life beyond sport.

8.
Cell Rep ; 43(8): 114483, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024096

RESUMEN

The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.

9.
Psychol Sport Exerc ; 73: 102640, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583792

RESUMEN

Retirement is one of the most impactful career transitions athletes face. Researchers recognise the role that athletic identity plays in this, but analysis of identity content and change processes is limited. Addressing this gap, we conducted a qualitative study exploring the experience of identity change in 21 competitive and successful elite athletes who had retired from sport. All participated in a one-session psychoeducational program that explored the challenges of transitioning out of sport before being interviewed about their understanding of identity in sport, and their experiences negotiating identity loss and change in retirement. Using reflexive thematic analysis, we identified three themes: (i) the role of identity and self-categorizations in shaping sport performance, (ii) adjusting to identity loss (with subthemes indicating that this experience varied depending on the extent to which a person had multiple or exclusive identities), and (iii) attempts to remoor identity in the transition (with subthemes of searching for a new identity and actively repurposing identity). We interpret these themes through the lens of the Social Identity Model of Identity Change and show that this provides a framework for extending our understanding the complexities of identity change associated with retirement from elite sport.


Asunto(s)
Atletas , Investigación Cualitativa , Jubilación , Identificación Social , Humanos , Jubilación/psicología , Masculino , Femenino , Atletas/psicología , Persona de Mediana Edad , Autoimagen , Adulto , Rendimiento Atlético/psicología , Anciano , Deportes/psicología
10.
Neurosci Biobehav Rev ; 153: 105334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37524140

RESUMEN

The insular cortex (IC) is implicated in risky decision making and drug-seeking behaviors, in a manner dissociable from natural reward seeking. However, evidence from rodent studies of motivated behaviors suggests that the role of the IC is not always consistent across procedures. Moreover, there is evidence of dissociation of function between posterior (pIC) and anterior (aIC) subregions in these behaviors. Under which circumstances, and by which mechanisms, these IC subregions are recruited to regulate motivated behaviors remains unclear. Here, we discuss evidence of rodent pIC and aIC function across drug-related behaviors, natural reward seeking, and decision making under risk and highlight procedural differences that may account for seemingly conflicting findings. Although gaps in the literature persist, we hypothesize that IC activity is broadly important for selection of appropriate behaviors based on learned action-outcome contingencies and that associated risk is sufficient, but not necessary, to recruit the aIC in reward seeking without involving the pIC.

11.
Sci Adv ; 9(43): eadj7611, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37878713

RESUMEN

Respiratory syncytial virus (RSV) can lead to serious disease in infants, and no approved RSV vaccine is available for infants. This first in-human clinical trial evaluated a single dose of BLB201, a PIV5-vectored RSV vaccine administrated via intranasal route, for safety and immunogenicity in RSV-seropositive healthy adults (33 to 75 years old). No severe adverse events (SAEs) were reported. Solicited local and systemic AEs were reported by <50% of participants and were mostly mild in intensity. Vaccine virus shedding was detected in 17% of participants. Nasal RSV-specific immunoglobulin A responses were detected in 48%, the highest level observed in adults among all intranasal RSV vaccines evaluated in humans. RSV-neutralizing antibodies titers in serum rose ≥1.5-fold. Peripheral blood RSV F-specific CD4+ and CD8+ T cells increased from ≤0.06% at baseline to ≥0.26 and 0.4% after vaccination, respectively, in >93% participants. The safety and immunogenicity profile of BLB201 in RSV-seropositive adults supports the further clinical development of BLB201.


Asunto(s)
Virus de la Parainfluenza 5 , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Adulto , Persona de Mediana Edad , Anciano , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Linfocitos T CD8-positivos , Anticuerpos Antivirales , Proteínas Virales de Fusión
12.
Elife ; 112022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35787792

RESUMEN

High-parameter single-cell phenotyping has enabled in-depth classification and interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan features of human immune cells at the single-cell level. We implemented CyTOF-Lec to compare glycan features between different immune subsets from blood and multiple tissue compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches to distinguish preferential infection of cellular subsets from viral-induced remodeling, we demonstrate that HIV upregulates the levels of cell-surface fucose and sialic acid in a cell-intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors, homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells' susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with different susceptibilities to HIV infection was experimentally validated through sorting experiments. Together, these results suggest that HIV remodels not only cellular proteins but also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly different susceptibility to HIV infection.


Living cells have a sugar coating. These sugars include molecules called glycans, which help cells interact with the outside world. The types of sugars on cells can affect their properties, including potentially their susceptibility to infection by viruses, such as the human immunodeficiency virus, HIV. To date, most research examining cells susceptible to HIV has focused on cell surface proteins, not sugars. To study these proteins, researchers had previously covered them in metal-studded antibodies (which stick to proteins) and used a technique called cytometry time of flight, or CyTOF for short, to quantify the levels of these proteins on the surface of cells susceptible to HIV. Adapting this tool to investigate sugars could answer questions about HIV infection. For example, does the virus prefer to infect cells coated in certain sugar molecules? And does it change the pattern of sugars on the surface of the cells it infects? Ma et al. adapted CyTOF to use molecules called lectins (which stick to sugars) in conjunction with the metal-studded antibodies. This made it possible to simultaneously measure the levels of 34 different proteins and 5 different types of sugars on individual cells. The pattern of sugars on the surface of cells from the immune system differed depending on what tissues the cells came from, and what types of cells they were. The results showed that HIV preferred to infect memory CD4 T cells with high levels of two types of sugar: fucose and sialic acid. Furthermore, during infection, the levels of both these sugars increased. Current treatments for HIV keep virus levels low but do not cure the infection. Further research could determine whether sugars have a role to play in HIV persistence. It is possible that the sugar patterns preferred by the virus help it to avoid detection. A clearer understanding of cell surface sugars could lead to sugar-targeting drugs that kill infected cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Susceptibilidad a Enfermedades , Fucosa , Glicómica , VIH-1/fisiología , Humanos , Ácido N-Acetilneuramínico , Polisacáridos
13.
Viruses ; 14(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36016345

RESUMEN

The efficacy of HIV pre-exposure prophylaxis (PrEP) is high in men who have sex with men, but much more variable in women, in a manner largely attributed to low adherence. This reduced efficacy, however, could also reflect biological factors. Transmission to women is typically via the female reproductive tract (FRT), and vaginal dysbiosis, genital inflammation, and other factors specific to the FRT mucosa can all increase transmission risk. We have demonstrated that mucosal fibroblasts from the lower and upper FRT can markedly enhance HIV infection of CD4+ T cells. Given the current testing of tenofovir disoproxil fumarate, cabotegravir, and dapivirine regimens as candidate PrEP agents for women, we set out to determine using in vitro assays whether endometrial stromal fibroblasts (eSF) isolated from the FRT can affect the anti-HIV activity of these PrEP drugs. We found that PrEP drugs exhibit significantly reduced antiviral efficacy in the presence of eSFs, not because of decreased PrEP drug availability, but rather of eSF-mediated enhancement of HIV infection. These findings suggest that drug combinations that target both the virus and infection-promoting factors in the FRT-such as mucosal fibroblasts-may be more effective than PrEP alone at preventing sexual transmission of HIV to women.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Minorías Sexuales y de Género , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Femenino , Fibroblastos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Homosexualidad Masculina , Humanos , Masculino , Vagina
14.
Elife ; 102021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636722

RESUMEN

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.


Vaccination is one of the best ways to prevent severe COVID-19. Two doses of mRNA vaccine protect against serious illness caused by the coronavirus SARS-CoV-2. They do this, in part, by encouraging the immune system to make specialised proteins known as antibodies that recognise the virus. Most of the vaccine research so far has focussed on these antibodies, but they are only one part of the immune response. Vaccines also activate immune cells called T cells. These cells have two main roles, coordinating the immune response and killing cells infected with viruses. It is likely that they play a key role in preventing severe COVID-19. There are many kinds of T cells, each with a different role. Currently, the identity and characteristics of the T cells that protect against COVID-19 is unclear. Different types of T cells have unique proteins on their surface. Examining these proteins can reveal details about how the T cells work, which part of the virus they recognise, and which part of the body they protect. A tool called cytometry by time of flight allows researchers to measure these proteins, one cell at a time. Using this technique, Neidleman, Luo et al. investigated T cells from 11 people before vaccination and after their first and second doses. Five people had never had COVID-19 before, and six had already recovered from COVID-19. Neidleman, Luo et al. found that the T cells recognizing SARS-CoV-2 in the two groups differed. In people who had never had COVID-19 before, the second dose of vaccine improved the quality and quantity of the T cells. The same was not true for people who had already recovered from COVID-19. However, although their T cells did not improve further after a second vaccine dose, they did show signs that they might offer more protection overall. The proteins on the cells suggest that they might last longer, and that they might specifically protect the nose, throat and lungs. Neidleman, Luo et al. also found that, for both groups, T cells activated by vaccination responded in the same way to different variants of the virus. This work highlights the importance of getting both vaccine doses for people who have never had COVID-19. It also suggests that vaccination in people who have had COVID-19 may generate better T cells. Larger studies could show whether these patterns remain true across the wider population. If so, it is possible that delivering vaccines to the nose or throat could boost immunity by mimicking natural infection. This might encourage T cells to make the surface proteins that allow them to home to these areas.


Asunto(s)
Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/efectos de los fármacos , Vacunas Sintéticas/farmacología , Adulto , Anciano , COVID-19/prevención & control , COVID-19/virología , Femenino , Humanos , Inmunización Secundaria , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven , Vacunas de ARNm
15.
Pathogens ; 10(6)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070980

RESUMEN

Breast cancer is the leading cause of cancer deaths among women worldwide. There are many known risk factors for breast cancer, but the role of infectious disease remains unclear. Human cytomegalovirus (HCMV) is a widespread herpesvirus that usually causes little disease. Because HCMV has been detected in breast tumor biopsy samples and is frequently transmitted via human breast milk, we investigated HCMV replication in breast tumor cells. Four human breast cancer cell lines with different expression profiles for the key diagnostic markers of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), were infected with a bacterial artificial chromosome-derived HCMV clinical strain TB40/E tagged with green fluorescent protein (GFP). Fluorescence microscopy confirmed that all four breast cancer cell lines supported virus entry. RNA was isolated from infected cells and the expression of immediate early (UL123), early (UL54), and late (UL111A) genes was confirmed using PCR. Viral proteins were detected by immunoblotting, and viral progeny were produced during the infection of breast tumor cells, as evidenced by subsequent infection of fibroblasts with culture supernatants. These results demonstrate that breast tumor cells support productive HCMV infection and could indicate that HCMV replication may play a role in breast cancer progression.

16.
bioRxiv ; 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34013277

RESUMEN

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.

17.
medRxiv ; 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33532792

RESUMEN

Although T cells are likely players in SARS-CoV-2 immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe COVID-19. We analyzed T cells from longitudinal specimens of 34 COVID-19 patients with severities ranging from mild (outpatient) to critical culminating in death. Relative to patients that succumbed, individuals that recovered from severe COVID-19 harbored elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 displayed elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of severe COVID-19 patients, these results support a model whereby lung-homing T cells activated through bystander effects contribute to immunopathology, while a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.

18.
Cell Rep ; 36(3): 109414, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34260965

RESUMEN

Although T cells are likely players in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity, little is known about the phenotypic features of SARS-CoV-2-specific T cells associated with recovery from severe coronavirus disease 2019 (COVID-19). We analyze T cells from 34 individuals with COVID-19 with severity ranging from mild (outpatient) to critical, culminating in death. Relative to individuals who succumbed, individuals who recovered from severe COVID-19 harbor elevated and increasing numbers of SARS-CoV-2-specific T cells capable of homeostatic proliferation. In contrast, fatal COVID-19 cases display elevated numbers of SARS-CoV-2-specific regulatory T cells and a time-dependent escalation in activated bystander CXCR4+ T cells, as assessed by longitudinal sampling. Together with the demonstration of increased proportions of inflammatory CXCR4+ T cells in the lungs of individuals with severe COVID-19, these results support a model where lung-homing T cells activated through bystander effects contribute to immunopathology, whereas a robust, non-suppressive SARS-CoV-2-specific T cell response limits pathogenesis and promotes recovery from severe COVID-19.

19.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33948597

RESUMEN

CD8+ T cells are important antiviral effectors that can potentiate long-lived immunity against COVID-19, but a detailed characterization of these cells has been hampered by technical challenges. We screened 21 well-characterized, longitudinally-sampled convalescent donors that recovered from mild COVID-19 against a collection of SARS-CoV-2 tetramers, and identified one participant with an immunodominant response against Nuc322-331, a peptide that is conserved in all the SARS-CoV-2 variants-of-concern reported to date. We conducted 38-parameter CyTOF phenotyping on tetramer-identified Nuc322-331-specific CD8+ T cells, and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins from SARS-CoV-2, and took 32 serological measurements on longitudinal specimens from this participant. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and antibody pillars of adaptive immunity. Nuc322-331-specific CD8+ T cells were predominantly central memory T cells, but continually evolved over a ~6-month period of convalescence. We observed a slow and progressive decrease in the activation state and polyfunctionality of the Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph-node homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence, into a state characteristic of long-lived, self-renewing memory.

20.
Neuron ; 106(2): 201-203, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32325053

RESUMEN

In this issue of Neuron, Lahiri and Bevan (2020) investigate the effects of dopamine release on striatal projection neurons. Using perforated patch recordings and optogenetics, they show that dopamine release persistently enhances the intrinsic excitability of direct pathway striatal neurons.


Asunto(s)
Cuerpo Estriado , Dopamina , Neuronas , Receptores de Dopamina D1 , Receptores de Dopamina D2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA