Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(1): 133-148.e20, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33338421

RESUMEN

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection, we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results, we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms present at nearly 20% in East Asian populations reduce flavivirus infection. Based on our mechanistic studies, we propose that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication.


Asunto(s)
Infecciones por Flavivirus/genética , Flavivirus/fisiología , Proteínas de la Membrana/metabolismo , Animales , Pueblo Asiatico/genética , Autofagia , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Sistemas CRISPR-Cas , Línea Celular , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/metabolismo , Infecciones por Flavivirus/virología , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , SARS-CoV-2/fisiología , Replicación Viral , Virus de la Fiebre Amarilla/fisiología , Virus Zika/fisiología
2.
Proc Natl Acad Sci U S A ; 117(43): 26946-26954, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33028676

RESUMEN

Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/enzimología , Ebolavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/farmacología , Alanina/farmacología , Betacoronavirus/química , Línea Celular , Tolerancia a Medicamentos/genética , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Humanos , Modelos Moleculares , Mutación , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
3.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143464

RESUMEN

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiología
4.
J Infect Dis ; 214(suppl 3): S258-S262, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27587631

RESUMEN

During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility. However, swabs are highly sensitive for diagnostic testing of corpses.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Servicios de Laboratorio Clínico , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Humanos , Laboratorios , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Sierra Leona/epidemiología
5.
J Infect Dis ; 212 Suppl 2: S350-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232439

RESUMEN

In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/virología , Centers for Disease Control and Prevention, U.S. , Brotes de Enfermedades , Epidemias , Humanos , Laboratorios , Sierra Leona/epidemiología , Estados Unidos
6.
N Engl J Med ; 367(9): 834-41, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22931317

RESUMEN

Two men from northwestern Missouri independently presented to a medical facility with fever, fatigue, diarrhea, thrombocytopenia, and leukopenia, and both had been bitten by ticks 5 to 7 days before the onset of illness. Ehrlichia chaffeensis was suspected as the causal agent but was not found on serologic analysis, polymerase-chain-reaction (PCR) assay, or cell culture. Electron microscopy revealed viruses consistent with members of the Bunyaviridae family. Next-generation sequencing and phylogenetic analysis identified the viruses as novel members of the phlebovirus genus. Although Koch's postulates have not been completely fulfilled, we believe that this phlebovirus, which is novel in the Americas, is the cause of this clinical syndrome.


Asunto(s)
Infecciones por Bunyaviridae/virología , Phlebovirus/clasificación , Anciano , Animales , Anticuerpos Antivirales/sangre , Médula Ósea/virología , Fiebre/etiología , Genoma Viral , Humanos , Inmunoglobulina A/sangre , Leucocitos/virología , Masculino , Persona de Mediana Edad , Missouri , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Filogenia , ARN Viral/análisis , Enfermedades por Picaduras de Garrapatas/virología
7.
Antimicrob Agents Chemother ; 58(6): 3206-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24663025

RESUMEN

No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2'-C-methylcytidine (2'-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2'-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2'-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2'-CMC, AHFV variants with reduced susceptibility to 2'-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2'-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2'-CMC.


Asunto(s)
Antivirales/farmacología , Flavivirus/efectos de los fármacos , Fiebres Hemorrágicas Virales/virología , Enfermedades por Picaduras de Garrapatas/tratamiento farmacológico , Enfermedades por Picaduras de Garrapatas/virología , Sustitución de Aminoácidos , Línea Celular , Citidina/análogos & derivados , Citidina/farmacología , Efecto Citopatogénico Viral/efectos de los fármacos , Farmacorresistencia Viral , Flavivirus/genética , Humanos , Modelos Moleculares , Mutación/genética , Replicación Viral/efectos de los fármacos
8.
J Virol ; 87(5): 2608-16, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23255795

RESUMEN

Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10(-4) nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10(-4) nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health.


Asunto(s)
Ebolavirus/genética , Genoma Viral , Fiebre Hemorrágica Ebola/genética , Enfermedad del Virus de Marburg/genética , Marburgvirus/genética , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Quirópteros/virología , Ebolavirus/clasificación , Evolución Molecular , Variación Genética , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Enfermedad del Virus de Marburg/epidemiología , Marburgvirus/clasificación , Datos de Secuencia Molecular , Filogenia , Primates/virología , Análisis de Secuencia de ADN , Proteínas Virales/química , Proteínas Virales/genética
9.
Antiviral Res ; 228: 105923, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844175

RESUMEN

There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.

10.
Access Microbiol ; 6(2)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482357

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.

11.
Emerg Infect Dis ; 19(6): 886-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23731788

RESUMEN

During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.


Asunto(s)
Virosis/diagnóstico , Virus/aislamiento & purificación , Virus/ultraestructura , Arenaviridae/aislamiento & purificación , Arenaviridae/ultraestructura , Bunyaviridae/aislamiento & purificación , Bunyaviridae/ultraestructura , Técnicas de Cultivo de Célula , Coronaviridae/aislamiento & purificación , Coronaviridae/ultraestructura , Flaviviridae/aislamiento & purificación , Flaviviridae/ultraestructura , Humanos , Microscopía Electrónica , Paramyxoviridae/aislamiento & purificación , Paramyxoviridae/ultraestructura , Estados Unidos/epidemiología , Virosis/epidemiología , Virosis/virología
12.
J Virol ; 86(19): 10759-65, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22837210

RESUMEN

Arenaviruses are rodent-borne viruses with a bisegmented RNA genome. A genetically unique arenavirus, Lujo virus, was recently discovered as the causal agent of a nosocomial outbreak of acute febrile illness with hemorrhagic manifestations in Zambia and South Africa. The outbreak had a case fatality rate of 80%. A reverse genetics system to rescue infectious Lujo virus from cDNA was established to investigate the biological properties of this virus. Sequencing the genomic termini showed unique nucleotides at the 3' terminus of the S segment promoter element. While developing this system, we discovered that reconstructing infectious Lujo virus using the previously reported L segment intergenic region (IGR), comprising the arenaviral transcription termination signal, yielded an attenuated Lujo virus. Resequencing revealed that the correct L segment IGR was 36 nucleotides longer, and incorporating it into the reconstructed Lujo virus restored the growth rate to that of the authentic clinical virus isolate. These additional nucleotides were predicted to more than double the free energy of the IGR main stem-loop structure. In addition, incorporating the newly determined L-IGR into a replicon reporter system enhanced the expression of a luciferase reporter L segment. Overall, these results imply that an extremely stable secondary structure within the L-IGR is critical for Lujo virus propagation and viral protein production. The technology for producing recombinant Lujo virus now provides a method to precisely investigate the molecular determinants of virulence of this newly identified pathogen.


Asunto(s)
Arenavirus/genética , ARN Viral/genética , Regiones no Traducidas 3' , Animales , Arenavirus/fisiología , Secuencia de Bases , Cricetinae , ADN Complementario/metabolismo , Genes Reporteros , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Nucleótidos/genética , Plásmidos/metabolismo , Virus ARN/genética , Sudáfrica , Factores de Tiempo , Virulencia , Zambia
13.
Emerg Infect Dis ; 18(9): 1480-3, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22931687

RESUMEN

Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Niño , Enfermedades Transmisibles Emergentes/diagnóstico , Ebolavirus/clasificación , Ebolavirus/aislamiento & purificación , Monitoreo Epidemiológico , Resultado Fatal , Femenino , Fiebre Hemorrágica Ebola/diagnóstico , Humanos , Uganda/epidemiología
14.
Nat Commun ; 13(1): 4350, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896523

RESUMEN

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pruebas de Neutralización , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
15.
PLoS Pathog ; 5(5): e1000455, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19478873

RESUMEN

Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever-associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus.


Asunto(s)
Arenavirus del Viejo Mundo/genética , Arenavirus del Viejo Mundo/aislamiento & purificación , Especiación Genética , África Austral/epidemiología , Infecciones por Arenaviridae/mortalidad , Infecciones por Arenaviridae/transmisión , Infecciones por Arenaviridae/virología , Secuencia de Bases , Infección Hospitalaria , Genoma Viral , Humanos , Filogenia , ARN Viral/genética , Proteínas Virales
16.
Sci Rep ; 11(1): 12330, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112850

RESUMEN

SARS-CoV-2 emerged in late 2019 and has since spread around the world, causing a pandemic of the respiratory disease COVID-19. Detecting antibodies against the virus is an essential tool for tracking infections and developing vaccines. Such tests, primarily utilizing the enzyme-linked immunosorbent assay (ELISA) principle, can be either qualitative (reporting positive/negative results) or quantitative (reporting a value representing the quantity of specific antibodies). Quantitation is vital for determining stability or decline of antibody titers in convalescence, efficacy of different vaccination regimens, and detection of asymptomatic infections. Quantitation typically requires two-step ELISA testing, in which samples are first screened in a qualitative assay and positive samples are subsequently analyzed as a dilution series. To overcome the throughput limitations of this approach, we developed a simpler and faster system that is highly automatable and achieves quantitation in a single-dilution screening format with sensitivity and specificity comparable to those of ELISA.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , SARS-CoV-2/aislamiento & purificación , Animales , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , Prueba Serológica para COVID-19/economía , Prueba Serológica para COVID-19/métodos , Ensayo de Inmunoadsorción Enzimática/economía , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Ratones , SARS-CoV-2/inmunología
17.
J Virol ; 83(7): 3104-14, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19129450

RESUMEN

The hepatitis C virus (HCV) core gene is more conserved at the nucleic acid level than is necessary to preserve the sequence of the core protein, suggesting that it contains information for additional functions. We used a battery of anticore antibodies to test the hypothesis that the core gene directs the synthesis of core protein isoforms. Infectious viruses, replicons, and RNA transcripts expressed a p8 minicore containing the C-terminal portion of the p21 core protein and lacking the N-terminal portion. An interferon resistance mutation, U271A, which creates an AUG at codon 91, upregulated p8 expression in Con1 replicons, suggesting that p8 is produced by an internal initiation event and that 91-AUG is the preferred, but not the required, initiation codon. Synthesis of p8 was independent of p21, as shown by the abundant production of p8 from transcripts containing an UAG stop codon that blocked p21 production. Three infectious viruses, JFH-1 (2a core), J6/JFH (2a core), and H77/JFH (1a core), and a bicistronic construct, Bi-H77/JFH, all expressed both p8 and larger isoforms. The family of minicores ranges in size from 8 to 14 kDa. All lack the N-terminal portion of the p21 core. In conclusion, the core gene contains an internal signal that stimulates the initiation of protein synthesis at or near codon 91, leading to the production of p8. Infectious viruses of both genotype 1 and 2 HCV express a family of larger isoforms, in addition to p8. Minicores lack significant portions of the RNA binding domain of p21 core. Studies are under way to determine their functions.


Asunto(s)
Hepacivirus/fisiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas del Núcleo Viral/biosíntesis , Codón Iniciador , Hepacivirus/genética , Datos de Secuencia Molecular , Mutación Missense , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Análisis de Secuencia de ADN , Proteínas del Núcleo Viral/genética
18.
bioRxiv ; 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33052348

RESUMEN

Flaviviruses pose a constant threat to human health. These RNA viruses are transmitted by the bite of infected mosquitoes and ticks and regularly cause outbreaks. To identify host factors required for flavivirus infection we performed full-genome loss of function CRISPR-Cas9 screens. Based on these results we focused our efforts on characterizing the roles that TMEM41B and VMP1 play in the virus replication cycle. Our mechanistic studies on TMEM41B revealed that all members of the Flaviviridae family that we tested require TMEM41B. We tested 12 additional virus families and found that SARS-CoV-2 of the Coronaviridae also required TMEM41B for infection. Remarkably, single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection. Based on our mechanistic studies we hypothesize that TMEM41B is recruited to flavivirus RNA replication complexes to facilitate membrane curvature, which creates a protected environment for viral genome replication. HIGHLIGHTS: TMEM41B and VMP1 are required for both autophagy and flavivirus infection, however, autophagy is not required for flavivirus infection.TMEM41B associates with viral proteins and likely facilitates membrane remodeling to establish viral RNA replication complexes.TMEM41B single nucleotide polymorphisms (SNPs) present at nearly twenty percent in East Asian populations reduce flavivirus infection.TMEM41B-deficient cells display an exaggerated innate immune response upon high multiplicity flavivirus infection.

19.
Emerg Infect Dis ; 15(10): 1598-602, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19861052

RESUMEN

A nosocomial outbreak of disease involving 5 patients, 4 of whom died, occurred in South Africa during September-October 2008. The first patient had been transferred from Zambia to South Africa for medical management. Three cases involved secondary spread of infection from the first patient, and 1 was a tertiary infection. A novel arenavirus was identified. The source of the first patient's infection remains undetermined.


Asunto(s)
Infecciones por Arenaviridae/epidemiología , Arenavirus/genética , Infección Hospitalaria/epidemiología , Fiebres Hemorrágicas Virales/epidemiología , Fiebres Hemorrágicas Virales/virología , Adulto , Antivirales/uso terapéutico , Arenavirus/clasificación , Trazado de Contacto , Brotes de Enfermedades , Resultado Fatal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ribavirina/uso terapéutico , Zambia/epidemiología
20.
Lancet Infect Dis ; 19(9): 1023-1032, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300330

RESUMEN

BACKGROUND: The ongoing Ebola virus outbreak in the Ituri and North Kivu Provinces of the Democratic Republic of the Congo, which began in July, 2018, is the second largest ever recorded. Despite civil unrest, outbreak control measures and the administration of experimental therapies and a vaccine have been initiated. The aim of this study was to test the efficacy of candidate therapies and diagnostic tests with the outbreak strain Ituri Ebola virus. Lacking a virus isolate from this outbreak, a recombinant Ituri Ebola virus was compared with a similarly engineered Makona virus from the 2013-16 outbreak. METHODS: Using Ebola virus sequences provided by organisations in DR Congo and a reverse genetics system, we generated an authentic Ebola virus from the ongoing outbreak in Ituri and North Kivu provinces. To relate this virus to other Ebola viruses in DR Congo, we did a phylogenetic analysis of representative complete Ebola virus genome sequences from previous outbreaks. We evaluated experimental therapies being tested in clinical trials in DR Congo, including remdesivir and ZMapp monoclonal antibodies, for their ability to inhibit the growth of infectious Ituri Ebola virus in cell culture. We also tested diagnostic assays for detection of the Ituri Ebola virus sequence. FINDINGS: The phylogenetic analysis of whole-genome sequences from each Ebola virus outbreak suggests there are at least two Ebola virus strains in DR Congo, which have independently crossed into the human population. The Ituri Ebola strain initially grew slower than the Makona strain, yet reached similar mean yields of 3 × 107 50% tissue culture infectious dose by 72 h infection in Huh-7 cells. Ituri Ebola virus was similar to Makona in its susceptibility to inhibition by remdesivir and to neutralisation by monoclonal antibodies from ZMapp and other monoclonal antibodies. Remdesivir inhibited Ituri Ebola virus at a 50% effective concentration (EC50) of 12nM (with a selectivity index of 303) and Makona Ebola virus at 13nM (with a selectivity index of 279). The Zmapp monoclonal antibodies 2G4 and 4G7 neutralised Ituri Ebola virus with a mean EC50 of 0·24 µg/mL and 0·48 µg/mL, and Makona Ebola virus with a mean EC50 of 0·45 µg/mL and 0·2 µg/mL. The Xpert Ebola and US Centers for Disease Control and Prevention real-time RT-qPCR diagnostic assays detected Ituri and Makona Ebola virus sequences with similar sensitivities and efficiencies, despite primer site binding mismatches in the Ituri Ebola virus. INTERPRETATION: Our findings provide a rationale for the continued testing of investigational therapies, confirm the effectiveness of the diagnostic assays used in the region, and establish a paradigm for the use of reverse genetics to inform response activities in an outbreak. FUNDING: US Centers for Disease Control and Prevention.


Asunto(s)
Antivirales/farmacología , ADN Viral/análisis , Brotes de Enfermedades , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Amiodarona/farmacología , Antiarrítmicos/farmacología , Anticuerpos Monoclonales/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , República Democrática del Congo/epidemiología , Humanos , Filogenia , Ribavirina/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Toremifeno/farmacología , Verapamilo/farmacología , Cultivo de Virus , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA