RESUMEN
BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.
Asunto(s)
Asma , Fumar Cigarrillos , Enfisema , Hipersensibilidad , Enfisema Pulmonar , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Pyroglyphidae , Fumar Cigarrillos/efectos adversos , Enfisema Pulmonar/etiología , InflamaciónRESUMEN
The epidemiological patterns of incident chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma are changing, with an increasing fraction of disease occurring in patients who are never-smokers or were not exposed to traditional risk factors. However, causative mechanism(s) are obscure. Overactivity of Src family kinases (SFKs) and myeloid cell-dependent inflammatory lung epithelial and endothelial damage are independent candidate mechanisms, but their pathogenic convergence has not been demonstrated. Here we present a novel preclinical model in which an activating mutation in Lyn, a nonreceptor SFK that is expressed in immune cells, epithelium, and endothelium-all strongly implicated in the pathogenesis of COPD-causes spontaneous inflammation, early-onset progressive emphysema, and lung adenocarcinoma. Surprisingly, even though activated macrophages, elastolytic enzymes, and proinflammatory cytokines were prominent, bone marrow chimeras formally demonstrated that myeloid cells were not disease initiators. Rather, lung disease arose from aberrant epithelial cell proliferation and differentiation, microvascular lesions within an activated endothelial microcirculation, and amplified EGFR (epidermal growth factor receptor) expression. In human bioinformatics analyses, LYN expression was increased in patients with COPD and was correlated with increased EGFR expression, a known lung oncogenic pathway, and LYN was linked to COPD. Our study shows that a singular molecular defect causes a spontaneous COPD-like immunopathology and lung adenocarcinoma. Furthermore, we identify Lyn and, by implication, its associated signaling pathways as new therapeutic targets for COPD and cancer. Moreover, our work may inform the development of molecular risk screening and intervention methods for disease susceptibility, progression, and prevention of these increasingly prevalent conditions.
Asunto(s)
Adenocarcinoma del Pulmón , Enfisema , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Adenocarcinoma del Pulmón/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/genética , Familia-src Quinasas/metabolismoRESUMEN
BACKGROUND AND OBJECTIVE: Inhalation of high concentrations of respirable crystalline silica (RCS) can lead to silicosis. RCS contains varying levels of iron, which can cause oxidative stress and stimulate ferritin production. This study evaluated iron-related and inflammatory markers in control and silicosis patients. METHODS: A cohort of stone benchtop industry workers (n = 18) were radiologically classified by disease severity into simple or complicated silicosis. Peripheral blood and bronchoalveolar lavage (BAL) were collected to measure iron, ferritin, C-reactive protein, serum amyloid A and serum silicon levels. Ferritin subunit expression in BAL and transbronchial biopsies was analysed by reverse transcription quantitative PCR. Lipid accumulation in BAL macrophages was assessed by Oil Red O staining. RESULTS: Serum iron levels were significantly elevated in patients with silicosis, with a strong positive association with serum ferritin levels. In contrast, markers of systemic inflammation were not increased in silicosis patients. Serum silicon levels were significantly elevated in complicated disease. BAL macrophages from silicosis patients were morphologically consistent with lipid-laden foamy macrophages. Ferritin light chain (FTL) mRNA expression in BAL macrophages was also significantly elevated in simple silicosis patients and correlated with systemic ferritin. CONCLUSION: Our findings suggest that elevated iron levels during the early phases of silicosis increase FTL expression in BAL macrophages, which drives elevated BAL and serum ferritin levels. Excess iron and ferritin were also associated with the emergence of a foamy BAL macrophage phenotype. Ferritin may represent an early disease marker for silicosis, where increased levels are independent of inflammation and may contribute to fibrotic lung remodelling.
Asunto(s)
Ferritinas , Silicosis , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar/química , Ferritinas/análisis , Ferritinas/metabolismo , Humanos , Inflamación/metabolismo , Hierro/análisis , Hierro/metabolismo , Lípidos , Pulmón/patología , Macrófagos/metabolismo , Dióxido de SilicioRESUMEN
Rationale: Declining lung function in patients with interstitial lung disease is accompanied by epithelial remodeling and progressive scarring of the gas-exchange region. There is a need to better understand the contribution of basal cell hyperplasia and associated mucosecretory dysfunction to the development of idiopathic pulmonary fibrosis (IPF).Objectives: We sought to decipher the transcriptome of freshly isolated epithelial cells from normal and IPF lungs to discern disease-dependent changes within basal stem cells.Methods: Single-cell RNA sequencing was used to map epithelial cell types of the normal and IPF human airways. Organoid and air-liquid interface cultures were used to investigate functional properties of basal cell subtypes.Measurements and Main Results: We found that basal cells included multipotent and secretory primed subsets in control adult lung tissue. Secretory primed basal cells include an overlapping molecular signature with basal cells obtained from the distal lung tissue of IPF lungs. We confirmed that NOTCH2 maintains undifferentiated basal cells and restricts basal-to-ciliated differentiation, and we present evidence that NOTCH3 functions to restrain secretory differentiation.Conclusions: Basal cells are dynamically regulated in disease and are specifically biased toward the expansion of the secretory primed basal cell subset in IPF. Modulation of basal cell plasticity may represent a relevant target for therapeutic intervention in IPF.
Asunto(s)
Plasticidad de la Célula , Proliferación Celular/genética , Autorrenovación de las Células/genética , Células Epiteliales/citología , Fibrosis Pulmonar Idiopática/genética , Mucosa Respiratoria/citología , Anciano , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Membrana Basal , Estudios de Casos y Controles , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Masculino , Persona de Mediana Edad , RNA-Seq , Mucosa Respiratoria/metabolismo , Análisis de la Célula Individual , Transcriptoma , Adulto JovenRESUMEN
Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.
Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Puntos de Control del Ciclo Celular , Diferenciación Celular , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Pulmón/citología , Ratones , Ratones Noqueados , Organogénesis/genética , Organogénesis/fisiología , Embarazo , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Complejo Correpresor Histona Desacetilasa y Sin3RESUMEN
Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD.
Asunto(s)
Interleucina-17/inmunología , Macrófagos/inmunología , Nicotiana/química , Neumonía/inmunología , Humo , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Quimiocina CCL3/metabolismo , Citometría de Flujo , Expresión Génica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interleucina-17/genética , Interleucina-17/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/inmunología , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Infiltración Neutrófila/inmunología , Neumonía/genética , Neumonía/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Serum amyloid A (SAA) is expressed locally in chronic inflammatory conditions such as chronic obstructive pulmonary disease (COPD), where macrophages that do not accord with the classic M1/M2 paradigm also accumulate. In this study, the role of SAA in regulating macrophage differentiation was investigated in vitro using human blood monocytes from healthy subjects and patients with COPD and in vivo using an airway SAA challenge model in BALB/c mice. Differentiation of human monocytes with SAA stimulated the proinflammatory monokines IL-6 and IL-1ß concurrently with the M2 markers CD163 and IL-10. Furthermore, SAA-differentiated macrophages stimulated with lipopolysaccharide (LPS) expressed markedly higher levels of IL-6 and IL-1ß. The ALX/FPR2 antagonist WRW4 reduced IL-6 and IL-1ß expression but did not significantly inhibit phagocytic and efferocytic activity. In vivo, SAA administration induced the development of a CD11c(high)CD11b(high) macrophage population that generated higher levels of IL-6, IL-1ß, and G-CSF following ex vivo LPS challenge. Blocking CSF-1R signaling effectively reduced the number of CD11c(high)CD11b(high) macrophages by 71% and also markedly inhibited neutrophilic inflammation by 80%. In conclusion, our findings suggest that SAA can promote a distinct CD11c(high)CD11b(high) macrophage phenotype, and targeting this population may provide a novel approach to treating chronic inflammatory conditions associated with persistent SAA expression.
Asunto(s)
Diferenciación Celular , Pulmón/citología , Macrófagos/citología , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animales , Western Blotting , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Hematopoyesis , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/fisiología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Amiloide A Sérica/genética , Transducción de SeñalRESUMEN
Chronic obstructive pulmonary disease (COPD) will soon be the third most common cause of death globally. Despite smoking cessation, neutrophilic mucosal inflammation persistently damages the airways and fails to protect from recurrent infections. This maladaptive and excess inflammation is also refractory to glucocorticosteroids (GC). Here, we identify serum amyloid A (SAA) as a candidate mediator of GC refractory inflammation in COPD. Extrahepatic SAA was detected locally in COPD bronchoalveolar lavage fluid, which correlated with IL-8 and neutrophil elastase, consistent with neutrophil recruitment and activation. Immunohistochemistry detected SAA was in close proximity to airway epithelium, and in vitro SAA triggered release of IL-8 and other proinflammatory mediators by airway epithelial cells in an ALX/FPR2 (formyl peptide receptor 2) receptor-dependent manner. Lipoxin A(4) (LXA(4)) can also interact with ALX/FPR2 receptors and lead to allosteric inhibition of SAA-initiated epithelial responses (pA(2) 13 nM). During acute exacerbation, peripheral blood SAA levels increased dramatically and were disproportionately increased relative to LXA(4). Human lung macrophages (CD68(+)) colocalized with SAA and GCs markedly increased SAA in vitro (THP-1, pEC(50) 43 nM). To determine its direct actions, SAA was administered into murine lung, leading to induction of CXC chemokine ligand 1/2 and a neutrophilic response that was inhibited by 15-epi-LXA(4) but not dexamethasone. Taken together, these findings identify SAA as a therapeutic target for inhibition and implicate SAA as a mediator of GC-resistant lung inflammation that can overwhelm organ protective signaling by lipoxins at ALX/FPR2 receptors.
Asunto(s)
Glucocorticoides/uso terapéutico , Lipoxinas/farmacología , Neumonía/complicaciones , Neumonía/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Proteína Amiloide A Sérica/farmacología , Animales , Líquido del Lavado Bronquioalveolar , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología , Glucocorticoides/farmacología , Humanos , Interleucina-8/metabolismo , Lipoxinas/administración & dosificación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Ratones , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Proteína Amiloide A Sérica/administración & dosificaciónRESUMEN
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Humanos , Envejecimiento/fisiología , Envejecimiento/metabolismo , Animales , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Inflamación/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologíaRESUMEN
Despite burgeoning interest in the potential of cellular therapies in lung regenerative medicine, progress in delivering these therapies has been confounded by a lack of knowledge about the identity of appropriate targets which can be harnessed to repair the lung, and the cellular and molecular factors which regulate their regenerative potential. While systematic analysis of lung development and cell lineage tracing studies in normal and perturbed animal models provides a framework for understanding the complex interplay of the multiple cell types, biomatrix elements and soluble and insoluble cytokines and factors that regulate lung structure and function, a reductionist approach is also required to analyze the organization of regenerative cells in the adult lung and identify the factors and molecular pathways which regulate their capacity to generate descendent lineages. In this review we describe recent progress in identifying and characterizing endogenous epithelial, mesenchymal and endothelial stem/progenitor cells in the adult lung using multiparameter cell separative strategies and functional in vitro clonogenic assays.
Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Pulmón/citología , Pulmón/metabolismo , Medicina Regenerativa/métodos , Adulto , Animales , Linaje de la Célula/fisiología , Citocinas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Pulmón/embriología , Células Madre Mesenquimatosas , RatonesRESUMEN
BACKGROUND: LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy. METHODS: Mouse lung cells were sorted on the basis of CD45(neg)CD31(neg)EpCAM(pos)LysoTracker(pos) expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media. RESULTS: The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTracker(pos) AT2 cells generated SP-C(pos) alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells. CONCLUSIONS: This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.
Asunto(s)
Aminas , Diferenciación Celular , Citometría de Flujo/métodos , Colorantes Fluorescentes , Alveolos Pulmonares/citología , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Técnicas In Vitro , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Modelos AnimalesRESUMEN
Recognition of the potential of stem cell-based therapies for alleviating intractable lung diseases has provided the impetus for research aimed at identifying regenerative cells in the adult lung, understanding how they are organized and regulated, and how they could be harnessed in lung regenerative medicine. In this review, we describe the attributes of adult stem and progenitor cells in adult organs and how they are regulated by the permissive or restrictive microenvironment in which they reside. We describe the power and limitations of experimental models, cell separative strategies and functional assays used to model the organization and regulation of adult airway and alveolar stem cells in the adult lung. The review summarizes recent progress and obstacles in defining endogenous lung epithelial stem and progenitor cells in mouse models and in translational studies.
Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/trasplante , Pulmón/citología , Células Madre/citología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Modelos Animales de Enfermedad , Humanos , Pulmón/fisiología , Enfermedades Pulmonares/terapia , Ratones , Regeneración/fisiología , Trasplante de Células MadreRESUMEN
The role of lung epithelial stem cells in maintenance and repair of the adult lung is ill-defined, and their identity remains contentious because of the lack of definitive markers for their prospective isolation and the absence of clonogenic assays able to measure their stem/progenitor cell potential. In this study, we show that replication of epithelial-mesenchymal interactions in a previously undescribed matrigel-based clonogenic assay enables the identification of lung epithelial stem/progenitor cells by their colony-forming potential in vitro. We describe a population of EpCAM(hi) CD49f(pos) CD104(pos) CD24(low) epithelial cfus that generate colonies comprising airway, alveolar, or mixed lung epithelial cell lineages when cocultured with EpCAM(neg) Sca-1(pos) lung mesenchymal cells. We show that soluble fibroblast growth factor-10 and hepatocyte growth factor partially replace the requirement for mesenchymal support of epithelial colony formation, allowing clonal passaging and demonstration of their capacity for self-renewal. These data support a model in which the adult mouse lung contains a minor population of multipotent epithelial stem/progenitor cells with the capacity for self-renewal and whose descendants give rise to airway and alveolar epithelial cell lineages in vitro.
Asunto(s)
Envejecimiento , Linaje de la Célula , Células Epiteliales/citología , Pulmón/citología , Células Madre/citología , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre/metabolismoRESUMEN
INTRODUCTION OR BACKGROUND: The adult lung is a complex organ whose large surface area interfaces extensively with both the environment and circulatory system. Yet, in spite of the high potential for exposure to environmental or systemic harm, epithelial cell turnover in adult lung is comparatively slow. Moreover, loss of lung function with advancing age is becoming an increasingly costly healthcare problem. Cell-based therapies stimulating endogenous stem/progenitor cells or supplying exogenous ones have therefore become a prime translational goal. Alternatively when lung repair becomes impossible, replacement with tissue-engineered lung is an attractive emerging alternative using a decellularized matrix or bioengineered scaffold. SOURCES OF DATA: Endogenous and exogenous stem cells for lung therapy are being characterized by defining developmental lineages, surface marker expression, functions within the lung and responses to injury and disease. Seeding decellularized lung tissue or bioengineered matrices with various stem and progenitor cells is an approach that has already been used to replace bronchus and trachea in human patients and awaits further development for whole lung tissue. AREAS OF AGREEMENT: Cellular therapies have clear potential for respiratory disease. However, given the surface size and complexity of lung structure, the probability of a single cellular population sufficing to regenerate the entire organ, as in the bone marrow, remains low. Hence, lung regenerative medicine is currently focused around three aims: (i) to identify and stimulate resident cell populations that respond to injury or disease, (ii) to transplant exogenous cells which can ameliorate disease and (iii) to repopulate decellularized or bioengineered lung matrix creating a new implantable organ. AREAS OF CONTROVERSY: Lack of consensus on specific lineage markers for lung stem and progenitor cells in development and disease constrains transferability of research between laboratories and sources of cellular therapy. Furthermore, effectiveness of individual cellular therapies to correct gas exchange and provide other critical lung functions remains unproven. Finally, feasibility of autologous whole organ replacement has not been confirmed as a durable therapy. Growing points Cellular therapies for lung regeneration would be enhanced by better lineage tracing within the lung, the ability to direct differentiation of exogenous stem or progenitor cells, and the development of functional assays for cellular viability and regenerative properties. Whether endogenous or exogeneous cells will ultimately play a greater therapeutic role remains to be seen. Reducing the need for lung replacement via endogenous cell-mediated repair is a key goal. Thereafter, improving the potential of donor lungs in transplant recipients is a further area where cell-based therapies may be beneficial. Ultimately, lung replacement with autologous tissue-engineered lungs is another goal for cell-based therapy. Areas timely for developing research Defining 'lung stem or progenitor cell' populations in both animal models and human tissue may help. Additionally, standardizing assays for assessing the potential of endogenous or exogenous cells within the lung is important. Understanding cell-matrix interactions in real time and with biomechanical insight will be central for lung engineering. Cautionary note Communicating the real potential for cell-based lung therapy needs to remain realistic, given the keen expectations of patients with end-stage lung disease.
Asunto(s)
Enfermedades Pulmonares/terapia , Trasplante de Células Madre/métodos , Animales , Humanos , Pulmón/fisiología , Trasplante de Pulmón/métodos , Ratones , Regeneración , Trasplante de Células Madre/tendencias , Ingeniería de Tejidos/métodosRESUMEN
Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.
RESUMEN
Air spaces of the mammalian lung are lined by a specialized epithelium that is maintained by endogenous progenitor cells. Within bronchioles, the abundance and distribution of progenitor cells that contribute to epithelial homeostasis change as a function of maintenance versus repair. It is unclear whether functionally distinct progenitor pools or a single progenitor cell type maintain the epithelium and how the behavior is regulated in normal or disease states. To address these questions, we applied fractionation methods for the enrichment of distal airway progenitors. We show that bronchiolar progenitor cells can be subdivided into two functionally distinct populations that differ in their susceptibility to injury and contribution to repair. The proliferative capacity of these progenitors is confirmed in a novel in vitro assay. We show that both populations give rise to colonies with a similar dependence on stromal cell interactions and regulation by TGF-ß. These findings provide additional insights into mechanisms of epithelial remodeling in the setting of chronic lung disease and offer hope that pharmacologic interventions may be developed to mitigate tissue remodeling.
Asunto(s)
Bronquiolos/metabolismo , Lesión Pulmonar/metabolismo , Animales , Células Epiteliales/citología , Femenino , Citometría de Flujo/métodos , Homeostasis , Humanos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Madre/citología , Células del Estroma/citología , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de HeridasRESUMEN
BACKGROUND AND PURPOSE: Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH: Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS: In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGß lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS: We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
Asunto(s)
Asma , Receptores de Factor Estimulante de Colonias de Granulocito , Animales , Asma/tratamiento farmacológico , Asma/patología , Asma/virología , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Fibrosis , Subtipo H3N2 del Virus de la Influenza A , Pulmón/patología , Ratones , Pyroglyphidae , Receptores de Factor Estimulante de Colonias de Granulocito/antagonistas & inhibidoresRESUMEN
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant repair that diminishes lung function via mechanisms that remain poorly understood. CC chemokine receptor (CCR10) and its ligand CCL28 were both elevated in IPF compared with normal donors. CCR10 was highly expressed by various cells from IPF lungs, most notably stage-specific embryonic antigen-4-positive mesenchymal progenitor cells (MPCs). In vitro, CCL28 promoted the proliferation of CCR10+ MPCs while CRISPR/Cas9-mediated targeting of CCR10 resulted in the death of MPCs. Following the intravenous injection of various cells from IPF lungs into immunodeficient (NOD/SCID-γ, NSG) mice, human CCR10+ cells initiated and maintained fibrosis in NSG mice. Eph receptor A3 (EphA3) was among the highest expressed receptor tyrosine kinases detected on IPF CCR10+ cells. Ifabotuzumab-targeted killing of EphA3+ cells significantly reduced the numbers of CCR10+ cells and ameliorated pulmonary fibrosis in humanized NSG mice. Thus, human CCR10+ cells promote pulmonary fibrosis, and EphA3 mAb-directed elimination of these cells inhibits lung fibrosis.