Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Annu Rev Cell Dev Biol ; 38: 241-262, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35587265

RESUMEN

While cellular proteins were initially thought to be stable, research over the last decades has firmly established that intracellular protein degradation is an active and highly regulated process: Lysosomal, proteasomal, and mitochondrial degradation systems were identified and found to be involved in a staggering number of biological functions. Here, we provide a global overview of the diverse roles of cellular protein degradation using seven categories: homeostasis, regulation, quality control, stoichiometry control, proteome remodeling, immune surveillance, and baseline turnover. Using selected examples, we outline how proteins are degraded and why this is functionally relevant.


Asunto(s)
Autofagia , Proteoma , Autofagia/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteoma/metabolismo , Ubiquitinación
2.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
3.
Mol Cell ; 84(14): 2765-2784.e16, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964322

RESUMEN

Dissecting the regulatory mechanisms controlling mammalian transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm in human and mouse cells. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA-binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered a link between DDX3X and nuclear export. For hundreds of RNA metabolism genes, most transcripts with retained introns were degraded by the nuclear exosome, while the remaining molecules were exported with stable cytoplasmic lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, machine learning identified molecular features that predicted the diverse life cycles of mRNAs.


Asunto(s)
Núcleo Celular , Cromatina , ARN Helicasas DEAD-box , ARN Mensajero , Animales , Humanos , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Cromatina/metabolismo , Cromatina/genética , Citoplasma/metabolismo , Citoplasma/genética , Estabilidad del ARN , Transporte Activo de Núcleo Celular , Polirribosomas/metabolismo , Polirribosomas/genética , Aprendizaje Automático , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Exosomas/metabolismo , Exosomas/genética
4.
Cell ; 167(3): 803-815.e21, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720452

RESUMEN

Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.


Asunto(s)
Estabilidad Proteica , Proteínas/metabolismo , Proteolisis , Alanina/análogos & derivados , Alanina/química , Aneuploidia , Línea Celular , Química Clic , Amplificación de Genes , Humanos , Cinética , Cadenas de Markov , Complejo de la Endopetidasa Proteasomal/química , Biosíntesis de Proteínas , Proteínas/química , Proteínas/genética , Proteoma , Ubiquitina/química
5.
Hum Mol Genet ; 33(R1): R34-R41, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38779776

RESUMEN

In human cells, the nuclear and mitochondrial genomes engage in a complex interplay to produce dual-encoded oxidative phosphorylation (OXPHOS) complexes. The coordination of these dynamic gene expression processes is essential for producing matched amounts of OXPHOS protein subunits. This review focuses on our current understanding of the mitochondrial central dogma rates, highlighting the striking differences in gene expression rates between mitochondrial and nuclear genes. We synthesize a coherent model of mitochondrial gene expression kinetics, highlighting the emerging principles and emphasizing where more precise measurements would be beneficial. Such an understanding is pivotal for grasping the unique aspects of mitochondrial function and its role in cellular energetics, and it has profound implications for aging, metabolic disorders, and neurodegenerative diseases.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Genoma Mitocondrial , Metabolismo Energético/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Envejecimiento/genética , Envejecimiento/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
6.
Annu Rev Genet ; 52: 511-533, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30230928

RESUMEN

Together, the nuclear and mitochondrial genomes encode the oxidative phosphorylation (OXPHOS) complexes that reside in the mitochondrial inner membrane and enable aerobic life. Mitochondria maintain their own genome that is expressed and regulated by factors distinct from their nuclear counterparts. For optimal function, the cell must ensure proper stoichiometric production of OXPHOS subunits by coordinating two physically separated and evolutionarily distinct gene expression systems. Here, we review our current understanding of mitonuclear coregulation primarily at the levels of transcription and translation. Additionally, we discuss other levels of coregulation that may exist but remain largely unexplored, including mRNA modification and stability and posttranslational protein degradation.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial/genética , Genoma/genética , Fosforilación Oxidativa , Núcleo Celular/genética , Mitocondrias/química , Mitocondrias/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN/genética , Transcripción Genética
7.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748249

RESUMEN

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Asunto(s)
Colesterol/biosíntesis , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Colesterol/genética , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-maf/genética , Ratas , Ratas Wistar
8.
Genes Dev ; 28(3): 290-303, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493648

RESUMEN

Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/citología , Alelos , Animales , Regulación de la Expresión Génica/genética , MAP Quinasa Quinasa 1/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Microscopía Electrónica de Transmisión , Complejos Multiproteicos , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptor ErbB-3/genética , Células de Schwann/ultraestructura , Transducción de Señal , Serina-Treonina Quinasas TOR
9.
Blood ; 133(13): 1489-1494, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696620

RESUMEN

Persistent NF-κB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection, soluble factors, and tumor-microenvironment interactions contribute to this activation. Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-κB activation, we have dissected the secretome of cultured cHL cells by chromatography and subsequent mass spectrometry. We identified lymphotoxin-α (LTA) as the causative factor for autocrine and paracrine activation of canonical and noncanonical NF-κB in cHL cell lines. In addition to inducing NF-κB, LTA promotes JAK2/STAT6 signaling. LTA and its receptor TNFRSF14 are transcriptionally activated by noncanonical NF-κB, creating a continuous feedback loop. Furthermore, LTA shapes the expression of cytokines, receptors, immune checkpoint ligands and adhesion molecules, including CSF2, CD40, PD-L1/PD-L2, and VCAM1. Comparison with single-cell gene-activity profiles of human hematopoietic cells showed that LTA induces genes restricted to the lymphoid lineage, as well as those largely restricted to the myeloid lineage. Thus, LTA sustains autocrine NF-κB activation, impacts activation of several signaling pathways, and drives expression of genes essential for microenvironmental interactions and lineage ambiguity. These data provide a robust rationale for targeting LTA as a treatment strategy for cHL patients.


Asunto(s)
Enfermedad de Hodgkin/inmunología , Janus Quinasa 2/inmunología , Linfotoxina-alfa/inmunología , FN-kappa B/inmunología , Factor de Transcripción STAT6/inmunología , Línea Celular , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/genética , Humanos , Linfotoxina-alfa/genética , Células de Reed-Sternberg/inmunología , Células de Reed-Sternberg/metabolismo , Transducción de Señal , Activación Transcripcional
11.
EMBO J ; 33(5): 407-8, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24473147

RESUMEN

Chromatin immunoprecipitation and sequencing (ChIP-seq) provides a static snap-shot of DNA-associated proteins which fails to reflect the dynamics of the DNA-bound proteome. Now, Catic and co-workers combine ubiquitin ChIP-seq and proteasome inhibitors to map sites of DNA-associated protein degradation on a genome-wide scale. They identify an ubiquitin ligase which targets a transcriptional repressor for destruction by the proteasome, thus activating transcription of specific genes. These findings reveal that the ubiquitin proteasome system actively regulates transcription.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteolisis , Elementos Reguladores de la Transcripción , Animales , Humanos
12.
Mol Cell Proteomics ; 14(1): 50-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326457

RESUMEN

The c-Jun N-terminal kinase (JNK) is an important mediator of physiological and pathophysiological processes in the central nervous system. Importantly, JNK not only is involved in neuronal cell death, but also plays a significant role in neuronal differentiation and regeneration. For example, nerve growth factor induces JNK-dependent neuronal differentiation in several model systems. The mechanism by which JNK mediates neuronal differentiation is not well understood. Here, we employed a proteomic strategy to better characterize the function of JNK during neuronal differentiation. We used SILAC-based quantitative proteomics to identify proteins that interact with JNK in PC12 cells in a nerve growth factor-dependent manner. Intriguingly, we found that JNK interacted with neuronal transport granule proteins such as Sfpq and Nono upon NGF treatment. We validated the specificity of these interactions by showing that they were disrupted by a specific peptide inhibitor that blocks the interaction of JNK with its substrates. Immunoprecipitation and Western blotting experiments confirmed the interaction of JNK1 with Sfpq/Nono and demonstrated that it was RNA dependent. Confocal microscopy indicated that JNK1 associated with neuronal granule proteins in the cytosol of PC12 cells, primary cortical neurons, and P19 neuronal cells. Finally, siRNA experiments confirmed that Sfpq was necessary for neurite outgrowth in PC12 cells and that it most likely acted in the same pathway as JNK. In summary, our data indicate that the interaction of JNK1 with transport granule proteins in the cytosol of differentiating neurons plays an important role during neuronal development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ratones , Factores de Crecimiento Nervioso/farmacología , Células PC12 , Factor de Empalme Asociado a PTB , Estructura Terciaria de Proteína , Proteómica , Transporte de ARN , Ratas
13.
Mol Syst Biol ; 11(8): 825, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26253569

RESUMEN

Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.


Asunto(s)
Quimera/genética , Regulación de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Animales , Secuencia de Bases , Línea Celular , Fibroblastos , Perfilación de la Expresión Génica , Frecuencia de los Genes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , ARN Mensajero/genética , Análisis de Secuencia de ADN
14.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36824735

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.

15.
Genome Biol ; 23(1): 170, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945592

RESUMEN

BACKGROUND: Oxidative phosphorylation (OXPHOS) complexes consist of nuclear and mitochondrial DNA-encoded subunits. Their biogenesis requires cross-compartment gene regulation to mitigate the accumulation of disproportionate subunits. To determine how human cells coordinate mitochondrial and nuclear gene expression processes, we tailored ribosome profiling for the unique features of the human mitoribosome. RESULTS: We resolve features of mitochondrial translation initiation and identify a small ORF in the 3' UTR of MT-ND5. Analysis of ribosome footprints in five cell types reveals that average mitochondrial synthesis levels correspond precisely to cytosolic levels across OXPHOS complexes, and these average rates reflect the relative abundances of the complexes. Balanced mitochondrial and cytosolic synthesis does not rely on rapid feedback between the two translation systems, and imbalance caused by mitochondrial translation deficiency is associated with the induction of proteotoxicity pathways. CONCLUSIONS: Based on our findings, we propose that human OXPHOS complexes are synthesized proportionally to each other, with mitonuclear balance relying on the regulation of OXPHOS subunit translation across cellular compartments, which may represent a proteostasis vulnerability.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas
16.
Cell Syst ; 10(2): 125-132, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32105631

RESUMEN

How do cells maintain relative proportions of protein complex components? Advances in quantitative, genome-wide measurements have begun to shed light onto the roles of protein synthesis and degradation in establishing the precise proportions in living cells: on the one hand, ribosome profiling studies indicate that proteins are already produced in the correct relative proportions. On the other hand, proteomic studies found that many complexes contain subunits that are made in excess and subsequently degraded. Here, we discuss these seemingly contradictory findings, emerging principles, and remaining open questions. We conclude that establishing precise protein levels involves both coordinated synthesis and post-translational fine-tuning via protein degradation.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Proteínas/metabolismo
17.
Nat Commun ; 8(1): 583, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928394

RESUMEN

Protein subcellular localization is fundamental to the establishment of the body axis, cell migration, synaptic plasticity, and a vast range of other biological processes. Protein localization occurs through three mechanisms: protein transport, mRNA localization, and local translation. However, the relative contribution of each process to neuronal polarity remains unknown. Using neurons differentiated from mouse embryonic stem cells, we analyze protein and RNA expression and translation rates in isolated cell bodies and neurites genome-wide. We quantify 7323 proteins and the entire transcriptome, and identify hundreds of neurite-localized proteins and locally translated mRNAs. Our results demonstrate that mRNA localization is the primary mechanism for protein localization in neurites that may account for half of the neurite-localized proteome. Moreover, we identify multiple neurite-targeted non-coding RNAs and RNA-binding proteins with potential regulatory roles. These results provide further insight into the mechanisms underlying the establishment of neuronal polarity.Subcellular localization of RNAs and proteins is important for polarized cells such as neurons. Here the authors differentiate mouse embryonic stem cells into neurons, and analyze the local transcriptome, proteome, and translated transcriptome in their cell bodies and neurites, providing a unique resource for future studies on neuronal polarity.


Asunto(s)
Neuritas/metabolismo , Proteínas/metabolismo , Proteoma/metabolismo , ARN Mensajero/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Neuronas/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas , Proteínas/genética , Proteoma/genética , ARN Mensajero/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Células Madre/citología , Células Madre/metabolismo , Transcriptoma
18.
Nat Commun ; 7: 12963, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713425

RESUMEN

Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patología , Células 3T3 , Animales , Carcinogénesis/patología , Dominio Catalítico/fisiología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Unión Proteica/fisiología , Inhibidores de Proteínas Quinasas/metabolismo , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/genética , Transducción de Señal/fisiología , Ubiquitinación/fisiología
19.
Nat Commun ; 7: 13047, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762274

RESUMEN

Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Dominios Proteicos/fisiología , Proteína que Contiene Valosina/metabolismo , Encéfalo/patología , Proliferación Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/aislamiento & purificación , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Ingeniería de Proteínas , Mapas de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA