Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FEBS Open Bio ; 14(3): 380-389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38129177

RESUMEN

The receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 virus mediates the interaction with the host cell and is required for virus internalization. It is, therefore, the primary target of neutralizing antibodies. The receptor-binding domain soon became the major target for COVID-19 research and the development of diagnostic tools and new-generation vaccines. Here, we provide a detailed protocol for high-yield expression and one-step affinity purification of recombinant RBD from transiently transfected Expi293F cells. Expi293F mammalian cells can be grown to extremely high densities in a specially formulated serum-free medium in suspension cultures, which makes them an excellent tool for secreted protein production. The highly purified RBD is glycosylated, structurally intact, and forms homomeric complexes. With this quick and easy method, we are able to produce large quantities of RBD (80 mg·L-1 culture) that we have successfully used in immunological assays to examine antibody titers and seroconversion after mRNA-based vaccination of mice.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , Glicoproteína de la Espiga del Coronavirus/química , SARS-CoV-2/metabolismo , Anticuerpos Antivirales , Mamíferos
2.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798523

RESUMEN

Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA