Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 35(2): 648-57, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589759

RESUMEN

There is continuing controversy relating to the primary afferent neurotransmitter that conveys itch signals to the spinal cord. Here, we investigated the DRG and spinal cord expression of the putative primary afferent-derived "itch" neurotransmitter, gastrin-releasing peptide (GRP). Using ISH, qPCR, and immunohistochemistry, we conclude that GRP is expressed abundantly in spinal cord, but not in DRG neurons. Titration of the most commonly used GRP antiserum in tissues from wild-type and GRP mutant mice indicates that the antiserum is only selective for GRP at high dilutions. Paralleling these observations, we found that a GRPeGFP transgenic reporter mouse has abundant expression in superficial dorsal horn neurons, but not in the DRG. In contrast to previous studies, neither dorsal rhizotomy nor an intrathecal injection of capsaicin, which completely eliminated spinal cord TRPV1-immunoreactive terminals, altered dorsal horn GRP immunoreactivity. Unexpectedly, however, peripheral nerve injury induced significant GRP expression in a heterogeneous population of DRG neurons. Finally, dual labeling and retrograde tracing studies showed that GRP-expressing neurons of the superficial dorsal horn are predominantly interneurons, that a small number coexpress protein kinase C gamma (PKCγ), but that none coexpress the GRP receptor (GRPR). Our studies support the view that pruritogens engage spinal cord "itch" circuits via excitatory superficial dorsal horn interneurons that express GRP and that likely target GRPR-expressing interneurons. The fact that peripheral nerve injury induced de novo GRP expression in DRG neurons points to a novel contribution of this peptide to pruritoceptive processing in neuropathic itch conditions.


Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Neuronas Aferentes/metabolismo , Médula Espinal/metabolismo , Animales , Anticuerpos/inmunología , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/inmunología , Inmunoquímica/métodos , Inmunoquímica/normas , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sensibilidad y Especificidad , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
2.
Physiol Genomics ; 44(20): 981-91, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22930738

RESUMEN

Sleep deprivation is a common problem of considerable health and economic impact in today's society. Sleep loss is associated with deleterious effects on cognitive functions such as memory and has a high comorbidity with many neurodegenerative and neuropsychiatric disorders. Therefore, it is crucial to understand the molecular basis of the effect of sleep deprivation in the brain. In this study, we combined genome-wide and traditional molecular biological approaches to determine the cellular and molecular impacts of sleep deprivation in the mouse hippocampus, a brain area crucial for many forms of memory. Microarray analysis examining the effects of 5 h of sleep deprivation on gene expression in the mouse hippocampus found 533 genes with altered expression. Bioinformatic analysis revealed that a prominent effect of sleep deprivation was to downregulate translation, potentially mediated through components of the insulin signaling pathway such as the mammalian target of rapamycin (mTOR), a key regulator of protein synthesis. Consistent with this analysis, sleep deprivation reduced levels of total and phosphorylated mTOR, and levels returned to baseline after 2.5 h of recovery sleep. Our findings represent the first genome-wide analysis of the effects of sleep deprivation on the mouse hippocampus, and they suggest that the detrimental effects of sleep deprivation may be mediated by reductions in protein synthesis via downregulation of mTOR. Because protein synthesis and mTOR activation are required for long-term memory formation, our study improves our understanding of the molecular mechanisms underlying the memory impairments induced by sleep deprivation.


Asunto(s)
Genómica , Hipocampo/metabolismo , Análisis por Matrices de Proteínas/métodos , Privación de Sueño/genética , Animales , Biología Computacional/métodos , Regulación de la Expresión Génica , Insulina/metabolismo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Biosíntesis de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
3.
Neuron ; 102(5): 944-959.e3, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31030955

RESUMEN

Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.


Asunto(s)
Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiopatología , Dolor Crónico/fisiopatología , Giro del Cíngulo/fisiopatología , Núcleo Talámico Mediodorsal/fisiopatología , Neuralgia/fisiopatología , Animales , Antineoplásicos Fitogénicos/toxicidad , Dolor Crónico/inducido químicamente , Dolor Crónico/etiología , Potenciales Postsinápticos Excitadores , Masculino , Ratones , Vías Nerviosas/fisiopatología , Neuralgia/inducido químicamente , Neuralgia/etiología , Paclitaxel/toxicidad , Técnicas de Placa-Clamp , Nervio Ciático/lesiones
4.
Neuron ; 78(2): 312-24, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23622066

RESUMEN

To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal projection neurons. The interneuron loss is associated with a near complete absence of supraspinally integrated pain and itch behaviors, elevated mechanical withdrawal thresholds and loss of nerve injury-induced mechanical hypersensitivity, but reflex responsiveness to noxious heat, nerve injury-induced heat hypersensitivity, and tissue injury-induced heat and mechanical hypersensitivity are intact. We conclude that different subsets of dorsal horn excitatory interneurons contribute to tissue and nerve injury-induced heat and mechanical pain and that the full expression of supraspinally mediated pain and itch behaviors cannot be generated solely by nociceptor and pruritoceptor activation of projection neurons; concurrent activation of excitatory interneurons is essential.


Asunto(s)
Interneuronas/fisiología , Dolor/genética , Dolor/patología , Prurito/patología , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética , Raíces Nerviosas Espinales/patología , Animales , Muerte Celular/genética , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hiperalgesia/genética , Hiperalgesia/patología , Lectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas v-fos/metabolismo , Umbral del Dolor/fisiología , Fosfopiruvato Hidratasa/metabolismo , Prurito/genética , Tiempo de Reacción/genética , Receptores de Esteroides/deficiencia , Receptores de Hormona Tiroidea/deficiencia , Sustancia P/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA