Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Parasitol Res ; 117(7): 2139-2148, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29728826

RESUMEN

Myobia sp. and Demodex sp. are two skin mites that infest mice, particularly immunodeficient or transgenic lab mice. In the present study, wild house mice from five localities from the Barcelona Roberstonian system were analysed in order to detect skin mites and compare their prevalence between standard (2n = 40) and Robertsonian mice (2n > 40). We found and identified skin mites through real-time qPCR by comparing sequences from the mitochondrial 16S rRNA and the nuclear 18S rRNA genes since no sequences are available so far using the mitochondrial gene. Fourteen positive samples were identified as Myobia musculi except for a deletion of 296 bp out to 465 bp sequenced, and one sample was identified as Demodex canis. Sampling one body site, the mite prevalence in standard and Robertsonian mice was 0 and 26%, respectively. The malfunction of the immune system elicits an overgrowth of skin mites and consequently leads to diseases such as canine demodicosis in dogs or rosacea in humans. In immunosuppressed mice, the probability of developing demodicosis is higher than in healthy mice. Since six murine toll-like receptors (TLRs) are located in four chromosomes affected by Robertsonian fusions, we cannot dismiss that differences in mite prevalence could be the consequence of the interruption of TLR function. Although ecological and/or morphological factors cannot be disregarded to explain differences in mite prevalence, the detection of translocation breakpoints in TLR genes or the analysis of TLR gene expression are needed to elucidate how Robertsonian fusions affect the immune system in mice.


Asunto(s)
Acaridae/clasificación , Acaridae/genética , Cabello/parasitología , Infestaciones por Ácaros/epidemiología , Piel/parasitología , Animales , Femenino , Masculino , Ratones , Infestaciones por Ácaros/veterinaria , Prevalencia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , España/epidemiología , Receptores Toll-Like/genética
2.
Chromosome Res ; 23(2): 159-69, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25589476

RESUMEN

Previous studies in the house mouse have shown that the presence of Robertsonian (Rb) metacentric chromosomes in heterozygous condition affects the process of spermatogenesis. This detrimental effect mainly depends on the number of metacentrics involved and the complexity of the resulting meiotic figures. In this study, we aimed at elucidating the relationship between the chromosomal composition and spermatogenesis impairment in mice present in an area of chromosomal polymorphism (the so-called Barcelona system BRbS) in which Rb mice are surrounded by all acrocentric animals, no established metacentric races are present and the level of structural heterozygosity is relatively low. Using the terminal deoxinucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we report higher frequency of apoptotic spermatogenetic cells in mice carrying six pairs of metacentrics at the homozygous state than in those carrying two or three fusions at the heterozygous state. Specifically, we detected a higher frequency of TUNEL-positive (T+) tubules and of T+ cells per tubule cross section and also a lower spermatid/spermatocyte ratio. These results indicate that the number of metacentrics at the homozygous state is more influential in determining apoptotic germ cell death than that of moderate chromosome heterozygosity. The percentage of germ cell death lower than 50 % found in our samples and the geographic distribution of the set of metacentrics within the BRbS indicate that although the spermatogenic alterations detected in this area could act as a partial barrier to gene flow, they are not sufficient to prevent Rb chromosomes from spreading in nature.


Asunto(s)
Muerte Celular/genética , Cromosomas de los Mamíferos , Células Germinativas/metabolismo , Polimorfismo Genético , Animales , Bandeo Cromosómico , Diploidia , Heterocigoto , Etiquetado Corte-Fin in Situ , Cariotipo , Masculino , Ratones , Espermatogénesis/genética
3.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24850922

RESUMEN

Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation.


Asunto(s)
Animales Salvajes/genética , Cromosomas/genética , Fusión Génica , Variación Genética , N-Metiltransferasa de Histona-Lisina/genética , Ratones/genética , Recombinación Genética/genética , Alelos , Animales , Animales Salvajes/metabolismo , Cromosomas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Masculino , Ratones/metabolismo , España
4.
BMC Evol Biol ; 13: 179, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24004811

RESUMEN

BACKGROUND: Modularity is an important feature in the evolvability of organisms, since it allows the occurrence of complex adaptations at every single level of biological systems. While at the cellular level the modular organization of molecular interactions has been analyzed in detail, the phenotypic modularity (or variational modularity) of cell shape remains unexplored. The mammalian spermatozoon constitutes one of the most complex and specialized cell types found in organisms. The structural heterogeneity found in the sperm head suggests an association between its inner composition, shape and specificity of function. However, little is known about the extent of the connections between these features. Taking advantage of the house mouse sperm morphology, we analyzed the variational modularity of the sperm head by testing several hypotheses related to its structural and functional organization. Because chromosomal rearrangements can affect the genotype-phenotype map of individuals and thus modify the patterns of covariation between traits, we also evaluate the effect of Robertsonian translocations on the modularity pattern of the sperm head. RESULTS: The results indicated that the house mouse sperm head is divided into three variational modules (the acrosomal, post-acrosomal and ventral spur module), which correspond to the main regions of the cytoskeletal mesh beneath the plasma membrane, i.e., the perinuclear theca. Most of the covariation is concentrated between the ventral spur and the acrosomal and post-acrosomal modules. Although the Rb fusions did not alter the main modularity pattern, they did affect the percentages of covariation between pairs of modules. CONCLUSIONS: The structural heterogeneity of the cytoskeleton is responsible for the modular organization of the sperm head shape, corroborating the role that this structure has in maintaining the cell shape. The reduction in percentages of shape covariation between pairs of modules in Rb sperms suggests that chromosomal rearrangements could induce changes in the genotype-phenotype map. Nevertheless, how these variations affect sperm fertilization success is yet to be elucidated.


Asunto(s)
Forma de la Célula , Cabeza del Espermatozoide/ultraestructura , Espermatozoides/citología , Acrosoma/ultraestructura , Animales , Citoesqueleto/química , Fertilización , Masculino , Ratones
5.
Ann Anat ; 215: 8-19, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28935565

RESUMEN

The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.


Asunto(s)
Mandíbula/crecimiento & desarrollo , Animales , Animales Salvajes , Desarrollo Óseo , Remodelación Ósea , Femenino , Mandíbula/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA