Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179666

RESUMEN

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Asunto(s)
Cromatina , Placenta , Animales , Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Immunity ; 55(4): 718-733.e8, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35349789

RESUMEN

Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24 h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Anticuerpos , Humanos , Memoria Inmunológica , Células B de Memoria , Ratones
3.
Am J Hum Genet ; 111(2): 338-349, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228144

RESUMEN

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Asunto(s)
Cardiopatías Congénitas , Transcriptoma , Humanos , Animales , Ratones , Exoma/genética , Cardiopatías Congénitas/genética , Secuenciación del Exoma , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Enzimas Activadoras de Ubiquitina/genética
4.
Nature ; 592(7852): 93-98, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33568816

RESUMEN

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Asunto(s)
Extremidades , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , ARN Largo no Codificante/genética , Eliminación de Secuencia/genética , Transcripción Genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos
5.
Theor Appl Genet ; 136(5): 121, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37119337

RESUMEN

KEY MESSAGE: The use of multi-environment trials to test yield-related traits in a diverse alfalfa panel allowed to find multiple molecular markers associated with complex agronomic traits. Yield is one of the most important target traits in alfalfa breeding; however, yield is a complex trait affected by genetic and environmental factors. In this study, we used multi-environment trials to test yield-related traits in a diverse panel composed of 200 alfalfa accessions and varieties. Phenotypic data of maturity stage measured as mean stage by count (MSC), dry matter content, plant height (PH), biomass yield (Yi), and fall dormancy (FD) were collected in three locations in Idaho, Oregon, and Washington from 2018 to 2020. Single-trial and stagewise analyses were used to obtain estimated trait means of entries by environment. The plants were genotyped using a genotyping by sequencing approach and obtained a genotypic matrix with 97,345 single nucleotide polymorphisms. Genome-wide association studies identified a total of 84 markers associated with the traits analyzed. Of those, 29 markers were in noncoding regions and 55 markers were in coding regions. Ten significant SNPs at the same locus were associated with FD and they were linked to a gene annotated as a nuclear fusion defective 4-like (NFD4). Additional SNPs associated with MSC, PH, and Yi were annotated as transcription factors such as Cysteine3Histidine (C3H), Hap3/NF-YB family, and serine/threonine-protein phosphatase 7 proteins, respectively. Our results provide insight into the genetic factors that influence alfalfa maturity, yield, and dormancy, which is helpful to speed up the genetic gain toward alfalfa yield improvement.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicago sativa , Medicago sativa/genética , Sitios de Carácter Cuantitativo , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Brain ; 145(3): 964-978, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34919646

RESUMEN

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease aetiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease using the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of post-mortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabelling of the same tissues. Moreover, we analysed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in idiopathic Parkinson's disease midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signalling and immunomodulatory treatments in Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Glicoproteínas de Membrana/metabolismo , Mesencéfalo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
8.
Genet Med ; 24(10): 2187-2193, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35962790

RESUMEN

PURPOSE: We aimed to identify the underlying genetic cause for a novel form of distal arthrogryposis. METHODS: Rare variant family-based genomics, exome sequencing, and disease-specific panel sequencing were used to detect ADAMTS15 variants in affected individuals. Adamts15 expression was analyzed at the single-cell level during murine embryogenesis. Expression patterns were characterized using in situ hybridization and RNAscope. RESULTS: We identified homozygous rare variant alleles of ADAMTS15 in 5 affected individuals from 4 unrelated consanguineous families presenting with congenital flexion contractures of the interphalangeal joints and hypoplastic or absent palmar creases. Radiographic investigations showed physiological interphalangeal joint morphology. Additional features included knee, Achilles tendon, and toe contractures, spinal stiffness, scoliosis, and orthodontic abnormalities. Analysis of mouse whole-embryo single-cell sequencing data revealed a tightly regulated Adamts15 expression in the limb mesenchyme between embryonic stages E11.5 and E15.0. A perimuscular and peritendinous expression was evident in in situ hybridization in the developing mouse limb. In accordance, RNAscope analysis detected a significant coexpression with Osr1, but not with markers for skeletal muscle or joint formation. CONCLUSION: In aggregate, our findings provide evidence that rare biallelic recessive trait variants in ADAMTS15 cause a novel autosomal recessive connective tissue disorder, resulting in a distal arthrogryposis syndrome.


Asunto(s)
Artrogriposis , Contractura , Proteínas ADAMTS , Animales , Artrogriposis/genética , Consanguinidad , Contractura/genética , Homocigoto , Humanos , Ratones , Mutación , Linaje , Fenotipo
9.
Mov Disord ; 37(7): 1405-1415, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460111

RESUMEN

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , ADN Mitocondrial/genética , Humanos , Inflamación/genética , Lipopolisacáridos/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
10.
Nucleic Acids Res ; 48(D1): D77-D83, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31665515

RESUMEN

Expression Atlas is EMBL-EBI's resource for gene and protein expression. It sources and compiles data on the abundance and localisation of RNA and proteins in various biological systems and contexts and provides open access to this data for the research community. With the increased availability of single cell RNA-Seq datasets in the public archives, we have now extended Expression Atlas with a new added-value service to display gene expression in single cells. Single Cell Expression Atlas was launched in 2018 and currently includes 123 single cell RNA-Seq studies from 12 species. The website can be searched by genes within or across species to reveal experiments, tissues and cell types where this gene is expressed or under which conditions it is a marker gene. Within each study, cells can be visualized using a pre-calculated t-SNE plot and can be coloured by different features or by cell clusters based on gene expression. Within each experiment, there are links to downloadable files, such as RNA quantification matrices, clustering results, reports on protocols and associated metadata, such as assigned cell types.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Especificidad de Órganos , Análisis de la Célula Individual/métodos , Interfaz Usuario-Computador
11.
J Evol Biol ; 34(8): 1333-1339, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101952

RESUMEN

Understanding the mechanisms that underlie chromosome evolution could provide insights into the processes underpinning the origin, persistence and evolutionary tempo of lineages. Here, we present the first database of chromosome counts for animals (the Animal Chromosome Count database, ACC) summarizing chromosome numbers for ~15,000 species. We found remarkable a similarity in the distribution of chromosome counts between animals and flowering plants. Nevertheless, the similarity in the distribution of chromosome numbers between animals and plants is likely to be explained by different drivers. For instance, we found that while animals and flowering plants exhibit similar frequencies of speciation-related changes in chromosome number, plant speciation is more often related to changes in ploidy. By leveraging the largest data set of chromosome counts for animals, we describe a previously undocumented pattern across the Tree of Life-animals and flowering plants show remarkably similar distributions of haploid chromosome numbers.


Asunto(s)
Magnoliopsida , Animales , Cromosomas , Magnoliopsida/genética , Filogenia , Plantas/genética , Poliploidía
12.
BMC Plant Biol ; 20(1): 303, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611315

RESUMEN

BACKGROUND: Alfalfa has been cultivated in many regions around the world as an important forage crop due to its nutritive value to livestock and ability to adapt to various environments. However, the genetic basis by which plasticity of quality-relevant traits influence alfalfa adaption to different water conditions remain largely unknown. RESULTS: In the present study, 198 accessions of alfalfa of the core collection for drought tolerance were evaluated for 26 forage quality traits in a field trial under an imposed deficit irrigation gradient. Regression analysis between quality traits and water stress revealed that values of fiber-related traits were negatively correlated with values of energy-related traits as water deficit increased. More than one hundred significant markers associated with forage quality under different water treatments were identified using genome-wide association studies with genotyping by sequencing. Among them, 131 markers associated with multiple traits in all the water deficit treatments. Most of the associated markers were dependent to the levels of water deficit, suggesting genetic controls for forage quality traits were dependent to the stress treatment. Twenty-four loci associated with forage quality were annotated to functional genes that may play roles in cell development or in response to water stress. CONCLUSIONS: This study addressed the genetic base of phenotypic variation of forage quality traits under water deficit. The SNP markers identified in this study will be useful in marker-assisted selection for the genetic improvement of alfalfa with enhanced drought tolerance while maintaining forage quality.


Asunto(s)
Medicago sativa/genética , Medicago sativa/fisiología , Adaptación Fisiológica , Análisis por Conglomerados , Sequías , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Tetraploidía , Agua
13.
Int J Legal Med ; 134(6): 2261-2273, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32914227

RESUMEN

The classical age indicators of the innominate have been the pubic symphysis and auricular surface. However, recently, the acetabulum has been highlighted as an indicator of adult age, with applicability in young, middle-aged, and older adults. The Rissech acetabular method was developed in a Portuguese population and tested in European and European-Americans, giving estimates within 10 years of age in more than 89% of the sample. The main goal of this paper is to test the Rissech acetabular method in a modern South American sample. The material used for the study was 184 women and 378 men from a Colombian-documented skeletal collection. The obtained morphological scores from the acetabulum were analyzed through the IDADE2 web page, a Bayesian statistical program that estimates a relative likelihood distribution for the target individuals, produces age estimates, and provides 95% confidence intervals. Results showed this method is useful in the modern Colombian population with an average absolute error of 10.63 years in females and 9.44 years in males. These errors are similar to those obtained in other European and North American samples when this method was performed and similar or lower than those obtained when the 3 classical aging methods (Suchey-Brooks, Buckberry-Chamberlain, and Lovejoy) were applied in the same collection (absolute error: 10.29 years ♀ and 9.05 years ♂ in Suchey-Brooks, 12.5 years ♀, and 12.17 years ♀ in Buckberry-Chamberlain, and 13.54 years ♀ and 10.99 years ♂ in Lovejoy). Although Rissech's method was developed in a Western European sample, the results of this study indicate its applicability in modern Colombian samples with reasonable accuracy.


Asunto(s)
Acetábulo/anatomía & histología , Determinación de la Edad por el Esqueleto/métodos , Envejecimiento/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Colombia , Femenino , Antropología Forense/métodos , Humanos , Masculino , Persona de Mediana Edad
14.
Int J Mol Sci ; 21(9)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397526

RESUMEN

Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.


Asunto(s)
Estudio de Asociación del Genoma Completo , Medicago sativa/genética , Tolerancia a la Sal/genética , Tetraploidía , Alelos , ADN de Plantas/genética , Conjuntos de Datos como Asunto , Genes de Plantas , Marcadores Genéticos , Desequilibrio de Ligamiento , Modelos Genéticos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Estaciones del Año , Selección Genética , Máquina de Vectores de Soporte
17.
Int J Legal Med ; 130(2): 541-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25588668

RESUMEN

The Colombian armed conflict has been catalogued not only as the longest civil war in the western hemisphere, but also as having one of the highest indexes of missing persons. Among the several challenges faced by forensic practitioners in Colombia, the commingling of human remains has been recognised as one of the most difficult to approach. The method of osteometric sorting described by Byrd and Adams and Byrd (2008) has proven relevant as a powerful tool to aid in the reassociation process of skeletal structures. The aim of this research was to evaluate the three osteometric sorting models developed by Byrd (2008) (paired elements, articulating bone portions and other bone portions) in a sample of modern Colombian individuals. A set of 39 linear measurements was recorded from a sample of 100 individuals (47 females and 53 males aged between 20 and 74 and 18 and 77 years, respectively), which was used to create a reference sample database. A different subset of eight individuals (five females aged between 23 and 48 years, and three males aged between 27 and 43 years) was employed to randomly create six small-scale commingled assemblages for the purposes of testing the osteometric sorting models. Results demonstrate that this method has significant potential for use in the Colombian forensic context.


Asunto(s)
Huesos/anatomía & histología , Antropología Forense/métodos , Adulto , Anciano , Colombia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Proyectos Piloto , Adulto Joven
18.
Proc Natl Acad Sci U S A ; 109(28): E1972-9, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22699502

RESUMEN

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.


Asunto(s)
Manihot/metabolismo , Manihot/microbiología , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN/métodos , Xanthomonas axonopodis/metabolismo , Área Bajo la Curva , Progresión de la Enfermedad , Genoma Bacteriano , Genómica , Geografía , Inmunidad Innata , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Factores de Tiempo
19.
BMC Microbiol ; 14: 161, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24946775

RESUMEN

BACKGROUND: Molecular typing of pathogen populations is an important tool for the development of effective strategies for disease control. Diverse molecular markers have been used to characterize populations of Xanthomonas axonopodis pv. manihotis (Xam), the main bacterial pathogen of cassava. Recently, diversity and population dynamics of Xam in the Colombian Caribbean coast were estimated using AFLPs, where populations were found to be dynamic, diverse and with haplotypes unstable across time. Aiming to examine the current state of pathogen populations located in the Colombian Eastern Plains, we also used AFLP markers and we evaluated the usefulness of Variable Number Tandem Repeats (VNTRs) as new molecular markers for the study of Xam populations. RESULTS: The population analyses showed that AFLP and VNTR provide a detailed and congruent description of Xam populations from the Colombian Eastern Plains. These two typing strategies clearly separated strains from the Colombian Eastern Plains into distinct populations probably because of geographical distance. Although the majority of analyses were congruent between typing markers, fewer VNTRs were needed to detect a higher number of genetic populations of the pathogen as well as a higher genetic flow among sampled locations than those detected by AFLPs. CONCLUSIONS: This study shows the advantages of VNTRs over AFLPs in the surveillance of pathogen populations and suggests the implementation of VNTRs in studies that involve large numbers of Xam isolates in order to obtain a more detailed overview of the pathogen to improve the strategies for disease control.


Asunto(s)
Variación Genética , Manihot/microbiología , Tipificación Molecular/métodos , Enfermedades de las Plantas/microbiología , Xanthomonas axonopodis/clasificación , Xanthomonas axonopodis/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Análisis por Conglomerados , Colombia , ADN Bacteriano/química , ADN Bacteriano/genética , Genotipo , Repeticiones de Minisatélite , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Xanthomonas axonopodis/aislamiento & purificación
20.
Sci Rep ; 14(1): 17588, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080407

RESUMEN

Alfalfa is widely recognized as an important forage crop. To understand the morphological characteristics and genetic basis of seed morphology in alfalfa, we screened 318 Medicago spp., including 244 Medicago sativa subsp. sativa (alfalfa) and 23 other Medicago spp., for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness & red-green-blue (RGB) intensities. The results revealed phenotypic diversity and correlations among the tested accessions. Based on the phenotypic data of M. sativa subsp. sativa, a genome-wide association study (GWAS) was conducted using single nucleotide polymorphisms (SNPs) called against the Medicago truncatula genome. Genes in proximity to associated markers were detected, including CPR1, MON1, a PPR protein, and Wun1(threshold of 1E-04). Machine learning models were utilized to validate GWAS, and identify additional marker-trait associations for potentially complex traits. Marker S7_33375673, upstream of Wun1, was the most important predictor variable for red color intensity and highly important for brightness. Fifty-two markers were identified in coding regions. Along with strong correlations observed between seed morphology traits, these genes will facilitate the process of understanding the genetic basis of seed morphology in Medicago spp.


Asunto(s)
Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Medicago , Polimorfismo de Nucleótido Simple , Semillas , Semillas/genética , Medicago/genética , Fenotipo , Sitios de Carácter Cuantitativo , Medicago sativa/genética , Medicago truncatula/genética , Genoma de Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA